【摘要】一、一階常系數(shù)齊次線性差分方程的求解二、一階常系數(shù)非齊次線性差分方程的求解第七節(jié)一階常系數(shù)線性差分方程三、小結(jié)一階常系數(shù)齊次線性差分方程的一般形式一階常系數(shù)非齊次線性差分方程的一般形式??1??2????.21次線性差分方程所對(duì)應(yīng)的一階常系數(shù)齊為注:)0(01為常數(shù)????aayyxx)(1xfayy
2025-08-21 12:47
【摘要】第2章繪制多諧振蕩器電路原理圖?教學(xué)目的及要求:?熟悉項(xiàng)目及工作空間的概念?熟練掌握創(chuàng)建一個(gè)新的原理圖圖紙?熟練掌握繪制電路原理圖?教學(xué)重點(diǎn)、難點(diǎn):?繪制電路原理圖復(fù)習(xí)?AltiumDesignerWinter09軟件特點(diǎn)?AltiumDesigner
2025-05-11 21:51
【摘要】§4-5二階電路的沖擊響應(yīng)0)0(??Cu0)0(??Li一、RLC串聯(lián)電路的h(t)求iL(t),uL(t)V)()0(tuL??解:1.因?yàn)閡C(0-)=0,iL(0-)=0所以LdtuLiiLLL1)0(1)0()0(00????????0)0()0(????CC
2025-10-08 04:08
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-06-25 01:32
【摘要】一、微分方程在經(jīng)濟(jì)中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟(jì)學(xué)中的綜合應(yīng)用1.分析商品的市場(chǎng)價(jià)格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對(duì)價(jià)格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時(shí),x=1200)(p的單位為元,x的單位為千克)試
2025-01-16 21:52
【摘要】第二章一階微分方程的初等解法§變量分離方程與變量變換yxyedxdy????122??yxdxdy先看例子:xyeye?定義1形如)()()(yxfdxdy??方程,稱為變量分離方程..,)(),(的連續(xù)函數(shù)分別是這里yxyxf?),(yxFdxdy?一
2025-07-20 18:49