【正文】
結(jié) 論本論文在掌握光子晶體的概念和基本理論的基礎(chǔ)上,利用傳輸矩陣法研究一維光子晶體的傳輸特性,分析光子晶體各個(gè)結(jié)構(gòu)參數(shù)對(duì)光子晶體傳輸特性的影響,研究發(fā)現(xiàn),隨著入射角度的增大,TE模和TM模的帶隙中心頻率均向高頻方向移動(dòng),TM模的帶隙中心移動(dòng)幅度更大;TE模的禁帶變寬了,TM模的禁帶變窄;TE模的振蕩加劇,TM模的振蕩減弱。周期數(shù)增大時(shí)還會(huì)使帶隙邊緣變陡,帶隙特征更加明顯。在MATLAB問(wèn)世不久的20世紀(jì)80年代中期,原先控制領(lǐng)域里的一些軟件包紛紛被淘汰或在MATLAB上重建。在當(dāng)時(shí),這兩個(gè)程序庫(kù)代表矩陣運(yùn)算的最高水平。Bardinal,V.。此代碼由格拉斯哥大學(xué)的安德魯 L. 雷諾茲開發(fā),是其申請(qǐng)哲學(xué)博士學(xué)位時(shí)所作的學(xué)術(shù)研究的一部分,由約翰此外,、和、需滿足如下方程: () ()其中,為介質(zhì)的介電常數(shù),為介質(zhì)的磁導(dǎo)率。探討光子品體帶隙所產(chǎn)生的新物理效應(yīng)和新現(xiàn)象。通過(guò)調(diào)節(jié)激光束的光束數(shù)、傳播方向和偏振,可以改變?nèi)S形狀的結(jié)構(gòu)和尺寸,產(chǎn)生各種不同的對(duì)稱結(jié)構(gòu)。這種技術(shù)為三維晶體的制造提供了一個(gè)可行的途徑,但關(guān)鍵是如何制備出帶隙在可見光和近紅外范圍的結(jié)構(gòu)。在自然界尚未曾發(fā)現(xiàn)此類的晶體。由于傳統(tǒng)的方法是將偶極平面天線直接制作在介質(zhì)基底上,因此天線的基底會(huì)吸收大量的能量,效率很低。傳輸矩陣法求解Maxwell方程的基本含義是:對(duì)光子晶體取厚度極小的薄層,把在薄層入射面處的電磁波和出射面處的電磁波通過(guò)一個(gè)矩陣聯(lián)系起來(lái),即通過(guò)矩陣將介質(zhì)層一邊的電磁波“傳輸”到介質(zhì)層的另一邊。目前人們已經(jīng)發(fā)現(xiàn)多種計(jì)算光子晶體的方法:包括平面波展開法,傳輸矩陣法,時(shí)域有限差分法,多重散射法等。而在光子晶體中,由于介電常數(shù)在空間的周期性變化,也存在類似的周期性勢(shì)場(chǎng)。采用聚焦技術(shù),多光子反應(yīng)可以被限制在的空間內(nèi),是激光的波長(zhǎng)。一旦獲得折射率超過(guò)2的玻璃體,就可以直接得到具有完全帶隙的光子晶體,而感光樹脂上得到的結(jié)構(gòu)也可以作為模板,以得到高介電常數(shù)的光子晶體,2002年Kirihara等利用計(jì)算機(jī)程序設(shè)計(jì)出金剛石結(jié)構(gòu),然后利用平板刻蝕技術(shù) (stereo lithography)在感光樹脂上轉(zhuǎn)印得到了金剛石結(jié)構(gòu)的光子晶體,這是第一次真正意義上得到了金剛石結(jié)構(gòu)的光子晶體。光在通訊領(lǐng)域中的優(yōu)勢(shì)其他物質(zhì)是很難比擬的,但阻礙光器件發(fā)展的主要困難就是光太難控制了,傳統(tǒng)的波導(dǎo)纖維對(duì)光的束縛能力差,在僅有5度的轉(zhuǎn)彎處,光場(chǎng)也會(huì)有超過(guò)一半的輻射損失,要實(shí)現(xiàn)90度的轉(zhuǎn)彎幾乎是不可能的。簡(jiǎn)單結(jié)構(gòu)的一維光子晶體通常由兩種介質(zhì)交替疊層而成,在垂直于介質(zhì)層方向上介電常數(shù)是空間位置的周期性函數(shù),而在平行于介質(zhì)層平面的方向上介電常數(shù)不隨空間位置變化。意識(shí)到電子器件的局限,人們把目光投向了光子,希望使用光子進(jìn)一步推動(dòng)社會(huì)和科技的進(jìn)步。光子晶體具有很多奇特的性質(zhì):光子帶隙特性,自輻射的抑制,光子雙穩(wěn)態(tài)特性,光子局域特性等。作為面向新世紀(jì)的實(shí)現(xiàn)人們對(duì)光的控制夢(mèng)想的新材料,光子晶體的光學(xué)特性以及晶體結(jié)構(gòu)設(shè)計(jì)的研究有非常重要的科學(xué)價(jià)值和實(shí)際應(yīng)用意義。光子的情況其實(shí)也非常類似。矩形的光子頻率禁帶范圍較窄,三角形和石墨結(jié)構(gòu)的光子頻率禁帶范圍較寬。不過(guò)三維光子晶體的制作相對(duì)來(lái)說(shuō)比較復(fù)雜,對(duì)材料和設(shè)計(jì)加工都有很高的要求。但這種結(jié)構(gòu)中兩種介電材料(二氧化硅和空氣)的折射率比遠(yuǎn)遠(yuǎn)達(dá)不到蛋白石結(jié)構(gòu)要求的4:1,:1,不能實(shí)現(xiàn)完全光子帶隙。研究人員預(yù)言,這種靈活性與新器件的幾何條件、效率及非常小的尺寸相結(jié)合,可能會(huì)在全球通信網(wǎng)絡(luò)中產(chǎn)生巨大的影響。1999年底,光子晶體被美國(guó)《Science》雜志評(píng)選為重大科學(xué)進(jìn)展的領(lǐng)域之一,預(yù)示著21世紀(jì)將是一個(gè)光子的世紀(jì)?,F(xiàn)在直接用來(lái)研究光子晶體中的雜質(zhì)能級(jí)。1999年,Painter等人在二維光子晶體中引入一點(diǎn)缺陷,就像一個(gè)光學(xué)微腔,從而實(shí)現(xiàn)了光子晶體激光器。下面將通過(guò)光子晶體的應(yīng)用和制作方面的說(shuō)明來(lái)介紹光子晶體的研究進(jìn)展。受現(xiàn)有半導(dǎo)體技術(shù)水平的限制。制作成本比較低廉。在最新的2004年6月出版的Nature上,Minghao Qi等發(fā)表文章報(bào)道,他們采用一種新穎的“l(fā)ayerbylayer”法已成功制備出具有點(diǎn)缺陷的三維光子晶體結(jié)構(gòu),這克服了激光全息法不易制備出帶有缺陷的光子品體結(jié)構(gòu)的不足。由于本論文是利用光學(xué)傳輸矩陣?yán)碚撨M(jìn)行計(jì)算的,所以本章從光學(xué)的角度,根據(jù)麥?zhǔn)戏匠掏茖?dǎo)了光子晶體的本征方程,對(duì)一維光學(xué)傳輸矩陣?yán)碚撨M(jìn)行了推導(dǎo)。圖22 光在不同介質(zhì)面上的反、投射光場(chǎng)在分界面1處,根據(jù)兩側(cè)的電場(chǎng)E和磁場(chǎng)H在切向上是連續(xù)的,可以得到: () ()在界面1處,設(shè)Z=O,可把透射電場(chǎng)可寫為如下形式: ()在界面1處的透射電場(chǎng)傳播到界面2處成為入射電場(chǎng),可得兩者的關(guān)系: ()當(dāng)光經(jīng)過(guò)厚度為h的介質(zhì)b時(shí),在X軸方向的傳播距離x和介質(zhì)層厚度h滿足關(guān)系: ()把()式帶入()式可得: ()同樣,我們可以得到和的關(guān)系: ()在分界面2上,根據(jù)場(chǎng)切向分量的連續(xù)性可得到: () ()對(duì)上面兩式作簡(jiǎn)單的變換可得: () ()把()式帶入()式可得: ()我們把()、()、()以及式()帶入()和()并利用,最后得到:()令,上面兩式可以寫成如下矩陣形式: ()上面方程中,作用矩陣即為該介質(zhì)層的傳輸特性矩陣,與介質(zhì)有關(guān)的系數(shù)皆為該層介質(zhì)的系數(shù)。 水晶體平面腔光子晶體中的孔洞:模型對(duì)稱,針對(duì)性對(duì)稱,耦合效率Villeneuve, P. R., Fan, S.。, F. LopezTejeira, D. Cassagne, F. J. GarciaVidal, . J. SanchezDehesa.Physical Review B, 15th October 1999.三維:泊光子晶體111。在當(dāng)今30多個(gè)數(shù)學(xué)類科技應(yīng)用軟件中,就軟件數(shù)學(xué)處理的原始內(nèi)核而言,可分為兩大類。而我們此次論文的二維以及三維的曲線圖都是通過(guò)Matlab軟件實(shí)現(xiàn)的。如圖44(a)(b)(c)(d)所示,我們可以看到:一是不論是TE模還是TM模,隨著入射角的增大,帶隙都逐漸向高頻方向移動(dòng),TM模的帶隙中心移動(dòng)幅度更大,使透射譜不再對(duì)稱;二是TE模的禁帶變寬,TM模的禁帶變窄;三是TM模的帶隙寬度隨著入射角的增大而逐漸減小,而TE模的帶隙寬度卻隨著入射角的增大略有增加。 nobody had ever tried to make a fiber like this before. The closest structures were glass nanocrystals (10), but these were only a few hundreds of micrometers thick. After several false starts, it was discovered that silica capillaries could be stacked, fused together, and drawn successfully down to PCF (Fig. 1) (11). This stackanddraw procedure proved highly versatile, allowing plex lattices to be assembled from individual stackable units of the correct size and shape. Solid, empty, or doped glass regions could easily be incorporated. My team had chanced upon a technology first used in the third to firstcenturies BC by the Egyptians to make mosaic glass (12). The technique’s success is largely due to the mechanical stability of the structure—the surface tension forces tend to balance out, allowing formation of highly regular lattices of holes during the drawing process. Overall collapse ratios as large as _50,000 times have been realized, and continuous holes as small as 25 nm in diameter have been demonstrated, earning an entry in the Guinness Book of Records in 1999 for the World’s Longest Holes.Another promising—though not yet perfected—technique is extrusion (13), in which molten glass is forced through a die containing a suitably designed pattern of holes. Extrusion allows fiber to be drawn directly from bulk glass, and almost any structure (crystalline or amorphous) can be produced. It works for many materials, including chalcogenides (14), polymers (15), and pound glasses. Selectivedoping of specified regions to introduce rareearth ions or render the glass photo sensitive is much more difficult, however.The first convincing photonic crystal fiber structure emerged from the fiber drawing tower in November 1995. It had a hexagonal closepacked array of small air channels and was free of any gross imperfections or defects. It was the photonic equivalent of a pure dopant and defectfree semiconductor crystal, requiring controlled introduction of impurities to be useful. Functional defects could be precisely introduced during the stacking process, allowing fabrication of a wide rangeof different PCFs.Light Guidance in PCFThe large index contrast and plex structure in PCF make it difficult to treat mathematically. Standard optical fiber analyses do not help, and so Maxwell’s equations must be solved numerically (16–20). Results are typically presented in the form of a propagation diagram, whose axes are the dimensionless quantitiesand c, whereis the interhole spacing and c is the speed of light in vacuum. This diagram indicates the ranges of frequency and axial wave vector ponent where the light is evanescent (unable to propagate).At fixed optical frequency, the maximum possible value ofis set by kn=n/c, where n is the refractive index of the region under consideration. Forkn, light is free to propagate。但光波斜入射時(shí),一維光子晶體卻具有TE波和TM波兩種傳播模式,它們具有不同的能帶結(jié)構(gòu)和反射率。還有一個(gè)主窗口,用來(lái)記錄已使用過(guò)的歷史命令和已打開的目錄,方便使用者查找。這一代的MATLAB語(yǔ)言同時(shí)具備了數(shù)值計(jì)算和數(shù)據(jù)圖示化的功能。Sigalas, M. M., et al., Phys. Rev. B 52, 11744 (1995).三維:泊光子晶體001。. 沃德,