freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高二數(shù)學(xué)正弦定理強(qiáng)化訓(xùn)練精選五篇(更新版)

  

【正文】 0,600,900所對(duì)的三邊長(zhǎng)分別約為5cm,10cm,=10187。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問(wèn)題來(lái)展開(kāi),強(qiáng)調(diào)學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)對(duì)任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長(zhǎng)與角度之間的數(shù)量關(guān)系,解決簡(jiǎn)單的三角形度量問(wèn)題。由此可以看出,《標(biāo)準(zhǔn)》在計(jì)算方面降低了要求,取消了“利用計(jì)算器解決解斜三角形的計(jì)算問(wèn)題”的要求,而在探索推理方面提高了要求,要求“通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理”。本文就《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5第一部分“解三角形”的課程內(nèi)容、教學(xué)目標(biāo)要求、課程關(guān)注點(diǎn)、內(nèi)容處理上等方面的變化進(jìn)行簡(jiǎn)要的分析,并對(duì)教學(xué)中應(yīng)注意的幾個(gè)問(wèn)題談?wù)勛约旱囊恍┰O(shè)想和教學(xué)建議,供大家參考。寫(xiě)成數(shù)學(xué)式子就是abc==。【師】:大家觀察一下正弦定理的這個(gè)式子,它是一個(gè)比例式?!編煛浚褐庇^的印象并不能代替嚴(yán)格的數(shù)學(xué)證明,所以,只是直觀的驗(yàn)證是不夠的,那能不能對(duì)這個(gè)定理給出一個(gè)證明呢?【生】:可以用三角形的面積公式對(duì)正弦定理進(jìn)行證明:S=1111absinC=acsinB=bcsinA,然后三個(gè)式子同時(shí)處以abc就可以得2222到正弦定理了。教學(xué)重點(diǎn):正弦定理的探索和證明及其基本應(yīng)用。A90176。C39。A=600,a=求或a=ksinA,b=ksinB,c=ksinC(k0)(2)正弦定理的應(yīng)用范圍:①已知兩角和任一邊,求其它兩邊及一角;②已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角。64時(shí),C=180(A+B)187。(cm); 根據(jù)正弦定理,b==187。C的大小的增大而增大。3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思思想能力,通過(guò)三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。編寫(xiě)意圖與特色1.?dāng)?shù)學(xué)思想方法的重要性數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。A = 30176。已知△ABC中,AB=6,∠A=30176。第一篇:高二數(shù)學(xué)正弦定理強(qiáng)化訓(xùn)練高二數(shù)學(xué)正弦定理強(qiáng)化訓(xùn)練 △ABC 中,b = 8,c =8,S△ABC =3,則∠A 等于() 或 或120186。或120176。;② a = 6,b = 10,208。(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教學(xué)內(nèi)容及課時(shí)安排建議(約3課時(shí))(約4課時(shí))(約1課時(shí))評(píng)價(jià)建議1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。:讓學(xué)生從已有的幾何知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用的實(shí)踐操作。C的大小與它的對(duì)邊AB的長(zhǎng)度之間有怎樣的數(shù)量關(guān)系?顯然,邊AB的長(zhǎng)度隨著其對(duì)角208。解:根據(jù)三角形內(nèi)角和定理,C=1800(A+B)=1800(+)=; =187。30(cm).⑴ 當(dāng)B187。sinAsinBsinCsinA+sinB+sinC[補(bǔ)充練習(xí)]已知DABC中,sinA:sinB:sinC=1:2:3,求a:b:c(答案:1:2:3)[課堂小結(jié)](由學(xué)生歸納總結(jié))abca+b+c(1)定理的表示形式:====k(k0); sinsinsinsin+sin+sin例3.已知DABC中,208。C=208。A)\asinC=csinA\asinA=csinCabAC同理:若過(guò)rC作j垂直于CB得: cb=,sinCsinBasinA=bsinB=csinCBc\AarjbC 當(dāng)DABC為鈍角三角形時(shí),設(shè)r208。3.情感目標(biāo):培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思思想能力,通過(guò)三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。在上面這個(gè)對(duì)稱(chēng)的式子中涉及到了三角形三個(gè)角的正弦,因此我們把它稱(chēng)為正弦定理,即我們今天的課題?!編煛浚航?jīng)過(guò)上面的證明,我們用兩種方法得到了正弦定理的證明,并且得到了正弦定理對(duì)于直角、銳角、鈍角三角形都是成立的。sin105o\b===20=5sinCsin30o總結(jié):本道例題給出了解三角形的第一類(lèi)問(wèn)題(已知兩角和一邊,求另外兩邊和一角,因?yàn)閮蓚€(gè)角都是確定的的,所以只有一種情況)【課堂練習(xí)1】教材P144練習(xí)1(可以讓學(xué)生上臺(tái)板演)【隨堂檢測(cè)】見(jiàn)幻燈片四、課堂小結(jié)【師】:本節(jié)課的主要內(nèi)容是正弦定理,即三角形ABC中有每條邊和它所對(duì)的角的正弦值相等。在這次新課程改革中,新普通高中《數(shù)學(xué)課程標(biāo)準(zhǔn)》(以下簡(jiǎn)稱(chēng)《標(biāo)準(zhǔn)》)與原全日制普通高級(jí)中學(xué)《數(shù)學(xué)教學(xué)大綱》(以下簡(jiǎn)稱(chēng)《大綱》)相比,“解三角形”這塊內(nèi)容在安排順序上進(jìn)行了新的整合。(2)能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。二、教學(xué)中應(yīng)注意的幾個(gè)問(wèn)題及教學(xué)建議原《大綱》中解斜三角形的內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。參考案例:正弦定理的探索、發(fā)現(xiàn)與證明教學(xué)建議:建議按如下步驟設(shè)計(jì)教學(xué)過(guò)程:(1)從特殊三角形入手進(jìn)行發(fā)現(xiàn)讓學(xué)生觀察并測(cè)量一個(gè)三角板的邊長(zhǎng)。(+)= j2.要重視綜合應(yīng)用《標(biāo)準(zhǔn)》要求掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。208。答: 甲船沿北偏東75o的方向,.為了測(cè)量某城市電視塔的高度,在一條直道上選 擇了A,B,C三點(diǎn),使AB=BC=60m,在A,B,C三點(diǎn)ooo例1圖 DA 觀察塔的最高點(diǎn),測(cè)得仰角分別為45,60,若測(cè)量 E,試求電視塔的高度(結(jié)果保留1位小數(shù)).F 教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫(huà)出示意圖如圖,將實(shí)際問(wèn)題轉(zhuǎn)化為解三角形問(wèn)題。參考答案:這是一個(gè)如何下料的問(wèn)題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB平行。②《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)))》
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1