【摘要】數(shù)學:“兩角差的余弦公式”教學設(shè)計一、教學內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學變換的結(jié)合點和交匯點上,是前面所學三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-18 21:26
【摘要】兩角和與差的正切一、填空題+tan75°1-tan75°=________.2.已知α∈??????π2,π,sinα=35,則tan??????α+π4的值等于________.3.若sinα=45,tan(α+β)=1,且α是第二象限角,則tanβ的值是___
2024-12-05 10:15
【摘要】正弦函數(shù)、余弦函數(shù)的圖象1.用“五點法”作函數(shù)y=cos2x,x∈R的圖象時,首先應(yīng)描出的五個點的橫坐標是()A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4πD.0,π6,π3,π2,2π3解析:令2x=0
2024-11-19 23:26
【摘要】兩角和與差的余弦公式【學習目標】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學習重點難點】向量法推導(dǎo)兩角和與差的余弦公式【學習過程】(一)預(yù)習指導(dǎo)探究cos(α+β)≠cosα+cosβ
2024-11-20 01:05
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)考查知識點及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|sinx|的一個單調(diào)增區(qū)間是()A.??????-π4,π4
【摘要】兩角和與差的正弦公式一.學習要點:兩角和與差的正弦公式及其簡單應(yīng)用。二.學習過程:1.兩角和與差的正弦公式及推導(dǎo):公式:
2024-11-27 23:36
【摘要】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
【摘要】§2兩角和與差的三角函數(shù)2.1兩角差的余弦函數(shù)2.2兩角和與差的正弦、余弦函數(shù),)1.問題導(dǎo)航(1)根據(jù)α+β=α-(-β),如何由Cα-β推出Cα+β?(2)對任意角α,β,cos(α-β)=cosα-cosβ成立嗎?(3)如
2024-11-28 00:14
【摘要】[答案](1)2-64(2)6-24(3)sinα[解析](1)cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=12·2
2024-11-09 01:26