【摘要】《一元二次不等式及其解法》典型例題透析類型一:解一元二次不等式例1.解下列一元二次不等式(1);(2);(3)思路點(diǎn)撥:轉(zhuǎn)化為相應(yīng)的函數(shù),數(shù)形結(jié)合解決,或利用符號(hào)法則解答.解析:(1)方法一:因?yàn)樗苑匠痰膬蓚€(gè)實(shí)數(shù)根為:,函數(shù)的簡(jiǎn)圖為:因而不等式的解集是.方法二:或解得或,即或.因而不等式的解集是.(2)方
2025-03-24 05:31
【摘要】 教師課時(shí)教案 備課人 授課時(shí)間 課題 §3.1一元二次不等式及其解法(1) 課標(biāo)要求 理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系, 教 學(xué) 目 標(biāo) 知識(shí)目標(biāo) ...
2025-04-03 03:19
【摘要】一元二次不等式的解法課件問題:(1)如何解一元二次方程(2)二次函數(shù)的圖象是什么曲線?(3)一元二次方程的解與二次函數(shù)的圖象有什么聯(lián)系?)0(02????acbxax)0(2?
2024-11-17 11:59
【摘要】第一課時(shí)不等關(guān)系與不等式(一)教學(xué)要求:了解現(xiàn)實(shí)世界和日常生活中存在著的不等關(guān)系;會(huì)從實(shí)際問題中找出不等關(guān)系,并能列出不等式與不等式組.教學(xué)重點(diǎn):從實(shí)際問題中找出不等關(guān)系.教學(xué)難點(diǎn):正確理解現(xiàn)實(shí)生活中存在的不等關(guān)系.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1、提問:你能回顧一下以前所學(xué)的不等關(guān)系嗎?2、討論:除了書上列舉的現(xiàn)
2024-11-18 15:56
【摘要】課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與價(jià)值:通過解決具體問題,體
【摘要】一元二次不等式及其解法(第2課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系,進(jìn)一步熟悉一元二次不等式的解法...合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境題組一:再現(xiàn)型題組解答下列各題:(1)已知二次函數(shù)f(x)=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0的解是;一
2024-12-09 03:40
【摘要】一元二次不等式及其解法(第二課時(shí))一、本節(jié)數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析:這一節(jié)課是《一元二次不等式及其解法》的第二課時(shí),在本節(jié)課之前,學(xué)生已學(xué)習(xí)了二次函數(shù),對(duì)一元二次不等式的解法有了初步的了解,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代
【摘要】一對(duì)一個(gè)性化輔導(dǎo)教案課題一元二次不等式及其解法教學(xué)重點(diǎn)一元二次不等式及其解法教學(xué)難點(diǎn)一元二次不等式及其解法教學(xué)目標(biāo)掌握二元一次不等式與線性規(guī)劃的基本知識(shí)及方法技巧教學(xué)步驟及教學(xué)內(nèi)容1、課前熱身,準(zhǔn)備上課二、內(nèi)容講解三.課堂小結(jié)4、作業(yè)布置 管理人
【摘要】一元二次不等式及其解法本節(jié)課是人教A版高中數(shù)學(xué)必修5中《》的第一課時(shí)。下面,我將分別從教學(xué)內(nèi)容解析、教學(xué)目標(biāo)解析、教學(xué)問題診斷、教法與學(xué)法分析、教學(xué)效果分析等五個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說明。一、教學(xué)內(nèi)容解析本節(jié)課是在學(xué)習(xí)了不等關(guān)系及不等式的基本性質(zhì)之后進(jìn)行的,其主要內(nèi)容是從實(shí)際情境中抽象出一元二次不等式模型、一