【摘要】§角的概念的推廣(課前預(yù)習(xí)案)班級:__姓名:__編寫:一、新知導(dǎo)學(xué):在平面內(nèi),角可以看做是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的圖形.旋轉(zhuǎn)起始時(shí)的射線叫做角的,終止時(shí)的射線叫做角的,射線的端點(diǎn)叫做角的.按逆時(shí)針方向旋轉(zhuǎn)所得到的角為,而按順時(shí)針方向旋轉(zhuǎn)所得到的角為
2025-11-09 16:46
【摘要】2020/12/25向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式2020/12/25向量數(shù)量積的坐標(biāo)運(yùn)算及度量公式?掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面數(shù)量積的坐標(biāo)運(yùn)算?能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積的坐標(biāo)表達(dá)式判斷兩個(gè)平面向量的垂直關(guān)系2020/12/25一、復(fù)習(xí)練習(xí):)(則,夾角為與若。????
2025-11-09 12:10
【摘要】2020年高中數(shù)學(xué)冪函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):1.理解冪函數(shù)的概念,會(huì)畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì),并能進(jìn)行簡單的應(yīng)用.3.滲透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問題具體分析的方法分析問題、
2025-11-10 23:24
【摘要】正弦函數(shù)的圖象與性質(zhì)(四)一.學(xué)習(xí)要點(diǎn):正弦函數(shù)的性質(zhì)之奇偶性、單調(diào)性二.學(xué)習(xí)過程:復(fù)習(xí)1.正弦函數(shù)的圖象;2.正弦函數(shù)的周期性;3.正弦函數(shù)的定義域、值域.新課學(xué)習(xí):1.奇偶性由??sinsinxx???知:正弦函數(shù)sinyx?是,正弦曲線關(guān)于原點(diǎn)對稱.正弦
2025-11-18 23:50
【摘要】一、自學(xué)目標(biāo):1、理解半角公式的推導(dǎo)過程2、會(huì)運(yùn)用半角公式進(jìn)行相關(guān)的運(yùn)算。二、自學(xué)過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導(dǎo)方法是2?S與2?C兩
2025-11-18 23:35
【摘要】三視圖自主學(xué)習(xí)學(xué)習(xí)目標(biāo)了解正投影的概念,理解三視圖的原理和視圖間的相互關(guān)系,能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡單組合)的三視圖,會(huì)畫某些建筑物或零件的直觀圖和三視圖,能識別三視圖所表示的立體模型,并會(huì)使用材料(比如紙板)制作模型.自學(xué)導(dǎo)引1.正投影在物體的平行投影中,如果投射線與投射面垂直,則稱
2025-11-09 16:47
【摘要】復(fù)習(xí)目標(biāo),及數(shù)量積的運(yùn)算.自學(xué)指導(dǎo)知識梳理2.平面向量的數(shù)量積
2025-11-19 00:26
【摘要】圓的一般方程課前練習(xí)?方程014222?????yxyx表示什么圖形?(圓)?方程064222?????yxyx表示什么圖形?(不表示任何圖形)一、【學(xué)習(xí)目標(biāo)】1、圓的一般方程的代數(shù)特征,會(huì)用待定系數(shù)法求圓的一般方程;2、理解求軌跡方程的步驟,掌握求軌跡方程的一般方法.[來源:學(xué)_科_網(wǎng)]二、【自學(xué)內(nèi)容和要求
2025-11-30 15:49
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列量不是向量的是().A.力B.速度C.質(zhì)量D.加速度解析質(zhì)量只有大小,沒有方向,不是向量.答案C2.下列說法錯(cuò)誤的是().A.向量AB→與BA→的長度相等B.兩個(gè)相等的向量若起點(diǎn)相
2025-11-19 01:55