【摘要】§超幾何分布一、基礎(chǔ)過關(guān)1.在100張獎券中,有4張能中獎,從中任取2張,則2張都能中獎的概率是________.2.從一副不含大、小王的52張撲克牌中任意抽出5張,則至少有3張是A的概率為________.(用式子表示)3.在含有5件次品的20件產(chǎn)品中,任取4件,
2025-11-29 20:17
【摘要】§二項分布一、基礎(chǔ)過關(guān)1.已知隨機變量ξ~B????6,13,則P(ξ=2)=________.2.種植某種樹苗,成活率為5棵,則恰好成活4棵的概率約為________.3.位于坐標(biāo)原點的一個質(zhì)點P按下述規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向為向上或向右,并且向上、向右移動的概率
2025-11-29 07:02
【摘要】二項式系數(shù)的性質(zhì)及應(yīng)用一、基礎(chǔ)過關(guān)1.已知(a+b)n的二項展開式中只有第5項的二項式系數(shù)最大,則n=________.2.已知??????x+33xn展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為64,則n=________.3.(x-1)11展開式中x的偶次項系數(shù)之和是_______
2025-11-29 05:54
【摘要】離散型隨機變量的方差與標(biāo)準(zhǔn)差一、基礎(chǔ)過關(guān)1.下列說法中,正確的是________.(填序號)①離散型隨機變量的均值E(X)反映了X取值的概率平均值;②離散型隨機變量的方差V(X)反映了X取值的平均水平;③離散型隨機變量的均值E(X)反映了X取值的平均水平;④離散型隨機變量的方差V(X)反映了X
2025-11-30 03:38
【摘要】隨機變量及其概率分布一、學(xué)習(xí)目標(biāo),了解隨機變量及離散型隨機變量的意義,理解取有限值的離散型隨機變量及其概率分布的概念.,認(rèn)識概率分布對于刻畫隨機現(xiàn)象的重要性.重點難點:理解離散型隨機變量及其概率分布的概念與求法.二、課前自學(xué)10株樹苗,成活的樹苗數(shù)X是0,1,?,10中的某個數(shù).,向上的點數(shù)Y
2025-11-26 09:27
【摘要】§1.3.2“楊輝三角”與二項式系數(shù)的性質(zhì)教學(xué)目標(biāo):知識與技能:掌握二項式系數(shù)的四個性質(zhì)。過程與方法:培養(yǎng)觀察發(fā)現(xiàn),抽象概括及分析解決問題的能力。情感、態(tài)度與價值觀:要啟發(fā)學(xué)生認(rèn)真分析書本圖1-5-1提供的信息,從特殊到一般,歸納猜想,合情推理得到二項式系數(shù)的性質(zhì)再給出嚴(yán)格的證明。教學(xué)重點:如何靈活運用展開式、通項公
2025-11-26 06:39
【摘要】2.1隨機變量及其概率分布【課標(biāo)要求】1.了解隨機變量的意義.2.會運用計數(shù)方法和概率知識求簡單的隨機變量的分布列.3.理解隨機變量分布的性質(zhì).【核心掃描】1.隨機變量的概念及離散型隨機變量分布列的概念.(重點)2.離散型隨機變量分布列的表示方法和性質(zhì).(難點)自學(xué)導(dǎo)引1.
2025-11-09 08:07
【摘要】第3章統(tǒng)計案例§獨立性檢驗一、基礎(chǔ)過關(guān)1.當(dāng)χ2時,就有________的把握認(rèn)為“x與y有關(guān)系”.2.在某醫(yī)院,因為患心臟病而住院的665名男性病人中,有214人禿頂;而另外772名不是因為患心臟病而住院的男性病人中有175人禿頂,則χ2≈__________.(結(jié)
【摘要】§隨機變量的均值和方差離散型隨機變量的均值一、基礎(chǔ)過關(guān)1.若隨機變量X的概率分布如下表所示,已知E(X)=,則a-b=________.X0123Pabξ~B????n,12,η~B????n,13,且E(ξ)=15,則E(η)=________.3.籃球運