【摘要】線性系統(tǒng)的時(shí)域分析狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算(1/1)狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算?下面進(jìn)一步討論前面引入的狀態(tài)轉(zhuǎn)移矩陣,主要內(nèi)容為:?基本定義?矩陣指數(shù)函數(shù)和狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)?狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)狀態(tài)轉(zhuǎn)移矩陣的定義(1/4)狀態(tài)轉(zhuǎn)移矩陣的定義?定義對(duì)于線性定常連續(xù)系統(tǒng)x’?Ax,
2025-05-13 21:34
【摘要】1/35計(jì)算方法三⑤上節(jié)課回顧直接法是通過有限步運(yùn)算后得到線性方程組的解.包含:高斯消元法(列主元消去法)、三角分解法、追趕法.解線性方程組的所有直接的方法比較適用于中小型方程組.對(duì)高階方程組,即使系數(shù)矩陣是稀疏的,但在計(jì)算中很難保持稀疏性,因而有存儲(chǔ)量大,程序復(fù)雜等不足,這些不足之處可用迭代法來彌補(bǔ)解決.
2025-10-05 17:21
【摘要】高等代數(shù)(I)AdvancedLinearAlgebra助教:鄧劍王威楊主講教師:高峽理科樓1478S?大課周三3,4節(jié)理教105周五1,2節(jié)理教105?習(xí)題課
2024-12-08 00:59
【摘要】實(shí)對(duì)稱矩陣的相似對(duì)角化一、實(shí)對(duì)稱矩陣的特征值與特征向量的性質(zhì):,),,,(,)(21TnnnijaaaaA?????TAAAA??為實(shí)對(duì)稱陣,故由于性質(zhì)1:實(shí)對(duì)稱矩陣的特征值都是實(shí)數(shù)。,的特征值階實(shí)對(duì)稱矩陣是設(shè)An??(1)兩端取轉(zhuǎn)置,得:TTTA??????兩端同時(shí)右乘??????TT??????????
2025-09-25 17:28
【摘要】第一章向量與矩陣的基本運(yùn)算2§1向量與矩陣的定義及運(yùn)算1212(,,1,)(1,2,,).nninninaaaaaaain????????????????由個(gè)數(shù)構(gòu)成的有序數(shù)組,記作=
2025-08-05 04:19
【摘要】矩陣第1節(jié)矩陣的秩與初等變換第2節(jié)矩陣的運(yùn)算一常見問題與矩陣關(guān)系1線性方程組與矩陣顯然矩陣A可以完全確定該線性方程組。因此對(duì)線性方程組的研究可以轉(zhuǎn)到對(duì)A的研究上來。第2節(jié)矩陣的運(yùn)算2線性變換與矩陣若記線性變換的系數(shù)aij構(gòu)成矩陣A=(aij)m×n
2025-10-10 00:19
【摘要】相異度矩陣(DissimilarityMatrix)定義:相異度矩陣存儲(chǔ)n個(gè)對(duì)象兩兩之間的相似性,表現(xiàn)形式是一個(gè)n×n維的矩陣。d(i,j)是對(duì)象i和j之間相異性的量化表示,通常為非負(fù)值,兩個(gè)對(duì)象越相似或“接近”,其值越接近0,越不同,其值越大,且d(i,j)=d(j,i),d(i,i)=0。
2025-05-09 03:06
【摘要】1§矩陣的轉(zhuǎn)置21122221222212'1111121121(),,().(1,,72,;ijsnssnnsnsssnTTjinnaaaaAasnAnsaaaaaaaAaaaa
2025-07-25 21:00
【摘要】1§5線性變換的對(duì)角矩陣主要內(nèi)容對(duì)角化概念對(duì)角化的條件目錄下頁返回結(jié)束對(duì)角化的計(jì)算方法2一、對(duì)角化概念對(duì)角矩陣是矩陣中最簡單的一種.于是問題變?yōu)槟男┚€性變換在一組適當(dāng)?shù)幕驴梢允菍?duì)角矩陣.(),,,.,.nnLVPVV
2025-07-17 19:14