【摘要】第08節(jié)曲線與方程一、選擇題(本大題共10小題,每小題5分,在每小題給出的四個(gè)選擇中,只有一個(gè)是符合題目要求的.)1.【百?gòu)?qiáng)校】【貴州省遵義四中】方程表示的曲線為()A.一條直線和一個(gè)圓B.一條射線與半圓C.一條射線與一段劣弧D.一條線段與一段劣弧【答案】D2.【2014
2025-06-07 13:52
【摘要】2014高考數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)--平面向量I卷一、選擇題1.設(shè)向量a,b滿足|a|=|b|=1,a·b=-,則|a+2b|=( )A. B.C. D.【答案】B2.已知A、B、C是不在同一直線上的三點(diǎn),O是平面ABC內(nèi)的一定點(diǎn),P是平面ABC內(nèi)的一動(dòng)點(diǎn),若(λ∈[0,+∞)),則點(diǎn)P的軌跡一定過(guò)△ABC的()A.外心 B.內(nèi)心 C.重心
2025-01-14 14:43
【摘要】第一篇:武漢科技大學(xué) 武漢科技大學(xué) 武漢科技大學(xué)簡(jiǎn)介 武漢科技大學(xué)是教育部和湖北省人民政府共建,涵蓋工學(xué)、理學(xué)、經(jīng)濟(jì)學(xué)、法學(xué)、文學(xué)、醫(yī)學(xué)、管理學(xué)等7個(gè)學(xué)科門類的綜合性大學(xué)。學(xué)校歷史可上溯到清末湖...
2024-10-29 03:40
【摘要】......橢圓與雙曲線的性質(zhì)橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).3
2025-04-17 13:06
【摘要】直線與圓錐曲線綜合問(wèn)題一.考點(diǎn)分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過(guò)消元得到一個(gè)一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長(zhǎng)
2025-01-09 16:02
【摘要】2019全國(guó)高考-圓錐曲線部分匯編(2019北京理數(shù))(4)已知橢圓(a>b>0)的離心率為,則(A)a2=2b2 (B)3a2=4b2 (C)a=2b (D)3a=4b(2019北京理數(shù))(18)(本小題14分)已知拋物線C:x2=?2py經(jīng)過(guò)點(diǎn)(2,?1).(Ⅰ)求拋物線C的方程及其準(zhǔn)線方程;(Ⅱ)設(shè)O為原點(diǎn),過(guò)拋物線C的焦點(diǎn)作斜率不為0的直線l交
2025-08-05 00:40
【摘要】圓錐曲線復(fù)習(xí)(一)數(shù)學(xué)高二年級(jí)例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點(diǎn)到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11
【摘要】2012高考試題分類匯編:8:圓錐曲線一、選擇題1.【2012高考新課標(biāo)文4】設(shè)是橢圓的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為() 【答案】C【解析】因?yàn)槭堑捉菫榈牡妊切危瑒t有,,因?yàn)?,所?,所以,即,所以,即,所以橢圓的離心率為,選C.2.【2012高考新課標(biāo)文10】等軸
2025-08-08 22:14
【摘要】高中數(shù)學(xué)圓的方程典型例題類型一:圓的方程例1求過(guò)兩點(diǎn)、且圓心在直線上的圓的標(biāo)準(zhǔn)方程并判斷點(diǎn)與圓的關(guān)系.分析:欲求圓的標(biāo)準(zhǔn)方程,需求出圓心坐標(biāo)的圓的半徑的大小,而要判斷點(diǎn)與圓的位置關(guān)系,只須看點(diǎn)與圓心的距離和圓的半徑的大小關(guān)系,若距離大于半徑,則點(diǎn)在圓外;若距離等于半徑,則點(diǎn)在圓上;若距離小于半徑,則點(diǎn)在圓內(nèi).解法一:(待定系數(shù)法)設(shè)圓的標(biāo)準(zhǔn)方程為.∵圓心在上,故.
2025-07-25 23:27