【摘要】第一篇:立體幾何教材分析 《數(shù)學(xué)必修模塊2》立體幾何教材分析 長沙市二十六中 為了更好地組織實(shí)施好本模塊的教學(xué),我們高一年級數(shù)學(xué)備課組成員以問題為載體,主要對如下課題進(jìn)行了研究:(1)課標(biāo)中所提...
2025-11-06 06:00
【摘要】第一篇:解立體幾何方法總結(jié) 啟迪教育 解立體幾何方法總結(jié) 1坐標(biāo)系的建立: 2空間向量的運(yùn)算: 3求異面直線的夾角 4法向量的求法 5證明線面平行方法: 6求線和面的夾角 7求幾何體...
2025-11-03 18:00
【摘要】立體幾何之外接球秒殺第一種長方體正方體模型長方體各頂點(diǎn)可在一個(gè)球面上,長為abc,,,其體對角線為l.當(dāng)球?yàn)殚L方體的外接球時(shí),截面圖為長方體的對角面和其外接圓,故球的半徑例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是()A.16pB.20pC.24
2025-07-24 12:09
【摘要】平面幾何知識點(diǎn)匯總(一)知識點(diǎn)一相交線和平行線對頂角的性質(zhì):對頂角相等。:性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。:性質(zhì)1:兩直線平行,同位角相等。性質(zhì)2:兩直線平
2025-06-24 15:21
【摘要】第一章相交線與平行線1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角,如∠1與∠2。且∠1+∠2=180°2.對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角,如∠2與∠4。對頂角的性質(zhì):對頂角相等,即∠2=∠4,∠1=∠3:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
2025-06-26 21:33
【摘要】俯視圖正(主)視圖側(cè)(左)視圖2322萬全高中高三數(shù)學(xué)(文)同步練習(xí)(23)---立體幾何一、選擇題1、右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),()可得該幾何體的表面積是()A. B. C. D.2、已知α,β是平面,m,() A.若m∥n,m⊥α,則n⊥
2025-06-07 19:13
【摘要】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因?yàn)锳BCD-A1B1C1D1為長方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-06-24 19:01
【摘要】立體幾何是高中數(shù)學(xué)重要的知識板塊,是高考中考考查考生空間想象能力和邏輯能力思維能力的良好素材,是高考的熱點(diǎn)內(nèi)容。主要研究空間直線與直線、直線與平面、平面與平面的三種位置關(guān)系,在此基礎(chǔ)上研究并討論空間的角和距離的計(jì)算。臺柱表面積和體積三視圖和直觀圖結(jié)構(gòu)直觀圖三視圖體積表面積空間幾何體球錐2.簡單幾何體的認(rèn)知結(jié)構(gòu)網(wǎng)絡(luò)圖
2025-08-18 16:48
【摘要】課時(shí)目標(biāo):1、了解空間動點(diǎn)集合的類型2、探索“動點(diǎn)問題”的解題思路問題一:動點(diǎn)P滿足如下條件時(shí)圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點(diǎn)距離等于定長平面內(nèi)到兩定點(diǎn)距離之和為定值(大于定點(diǎn)間的距離)平面內(nèi)到兩定點(diǎn)距離之差的絕對值為定值(小于定點(diǎn)間的距離)
2025-08-05 10:16