【正文】
the percent pression in the physical structure is as much as 15fold, whereas in the open model constructed on a 1:60 scale, the percent pression is in the range , ., onetenth that of the values found in the field. Moreover, in the experiments using the models, there was an increase noted in the angles of rotation of the flow in the initial segment of the tailrace tunnel as the escapage discharge was decreased and the content of air in the mixture was increased. Inasmuch as in the physical object the air content in the critical section is always insignificant, the increase in the angles of rotation as the volume of escapage discharge was decreased was unexpected. To create a reliable model of vortextype flow when there is a free level in the stem of the shaft and abundant air entrapment by the flow, it is necessary to isolate the region of air in the upper and lower ponds from the external atmosphere and to reduce the air pressure in these regions through creation of a vacuum in accordance with the geometric scale of the model. Hydraulic Conditions throughout the Spillway Segment. The hydraulic conditions of operation of vortex spillways differ substantially from the corresponding conditions for spillways constructed in the traditional configuration. Let us consider these differences on the basis of the results of laboratory studies of the operational spillways of the Rogunskii hydroelectric plant (which includes an energy dissipation chamber) and the spillway of the Teri hydraulic works (which operates with smooth dissipation of energy throughout the length of the tunnel). The initial design of the Rogunskii hydroelectric plant called for a chute as the terminus structure of the operational spillway。 Hydrotechnical Construction, Vol. 29, No. 9, 1995 VORTEXTUNNEL SPILLWAYS. HYDRAULIC OPERATING CONDITIONS M. A. Galant, B. A. Zhivotovskii, I. S. Novikova, V. B. Rodionov, and N. N. Rozanova Tunnel spillways are widely used in medium and highpressure hydraulic works. It is therefore an important and pressing task to improve the constructions used in these types of spillways and to develop optimal and reliable spillway structures. With this in mind, we would like to turn the reader39。 這 時 伴隨著顯著的能量耗散。 減少壓力的燃氣蒸汽的核心是與離心力的作用,在渦旋式流動,同時增加了壓力與幾乎完全釋放空氣曝氣流量為核心引起的運輸氣泡從外圍向中心的作用下的壓力梯度。 研究表明,在進行軸的送水流量旋轉(zhuǎn)節(jié)點,中間水位保持在流量小于設(shè)計速度。初步設(shè)計的 rogunskii水電廠稱為槽的末端結(jié)構(gòu)的 專業(yè) 溢洪道;它的目的是, 使 結(jié)束流動率達到 60米 /秒。在水力模型外部大氣壓力時,空氣的體積含量略有不同的流動是礦井下運輸?shù)年P(guān)鍵的部分,而在物理結(jié)構(gòu),包埋空氣,向下移動,壓縮的增加液體壓力。 該方法決定耗散過剩能量(無論是 均勻 或越來越密集耗散)。該系數(shù)的 tangentialtype渦流生成腦電圖 =安全裝置。 整個長度的尾 段 溢洪道,以及一定程度的洪水的軸(即,其水力工況des)。選擇一個特定的溢洪道類型取決于很多因素,如有效的 水頭 ,巨大的 escapage放電,這 是 配置的液壓項目(例如,使用一個河引水隧道在運營期間或的水管道水力發(fā)電廠在施工期間),在放電的流入尾水渠道,地形及地質(zhì)特征(特別是可能的長度,尾水腿),和技術(shù)經(jīng)濟特點。液壓系統(tǒng)用于鏈接的流量的尾管可能涉及 可以 使用 overflowtype或 自由落體式結(jié)構(gòu)。 因 此,流量稍渦旋式和軸向流經(jīng) 溢洪道 的 尾端 ,不 會 產(chǎn)生汽蝕 損 害 。液壓操作條件 M . A .戈藍, B. zhivotovskii,我 mamskii,和 tupolangskii液壓工程的基礎(chǔ)上 存在的 不同的經(jīng)營原則現(xiàn)在已經(jīng)完成了。然而,每一個實際工程設(shè)計結(jié)構(gòu)也必須進行評估 。其目的在 保持其運輸能力時,運作中的 水能自由下泄 。 1和 2)。例如, tupolangskii渦旋式溢洪道, Areq=;為 tel39。選擇設(shè)計 的 尺寸取決于速度旋轉(zhuǎn)流入口和后室長度的尾水隧洞。因為在物理對象中空氣含量的關(guān)鍵部分都是微不足道的。通過 溢洪道和大大減少流量的尾水隧洞,排入河道。 此外,較低水平的水,空氣越多限制水的流量將流入旋轉(zhuǎn)節(jié)點。 相對面積的氣體從 ,長度的錐形部分,而角旋轉(zhuǎn)流減少之間的一半和三分之二的初始值的這一段。分布的靜態(tài)壓力在水洞 中 取決于設(shè)計的隧道和流動程度的旋轉(zhuǎn)。 cf. Fig. 1), while the crosssection of the tunnel is either circular or nearcircular throughout its length. vortextype spillways with increasingly greater dissipation of the energy of the vortextype flow over a shorter length Lr (60 80)hT of a noncircular section river diversion tunnel (horseshoeshaped, square, triangular) which is connected to the eddy chamber either by means of an energydissipation (expansion) chamber (Fig. 2) [5, 6] or by means of a smooth transition leg [7