【正文】
er shares the same premise parts with (1)。文 [5][6]研究了模糊時滯系統(tǒng)的靜態(tài)輸出反饋控制問題,文 [8]第一次提出了模糊靜態(tài)輸出反饋 H∞ 控制的問題。 綜上分析,本文研究了一類用 TS模型表示的 DFBS靜態(tài)輸出反饋控制問題。 1 系統(tǒng)的模型描述 由 TS模型描述的不確定模糊雙線性系統(tǒng) ,它的第 i 條規(guī)則可描述如下 : 11 ( ) .. . ( ) ( 1 ) ( ) ( ) ( ) ( )( ) ( ) : { 1 , 2. .. .. }i i ivvi i iiR if t is M an d an d t is Mthe n x t A x t B u t N x t u ty t C x t i I s??? ? ? ?? ? ? ( 1)其中:ijF 是模糊集合, 1,2,...,jv? , 12( ) [ ( ) , ( ) .. . ( ) ]Tvt t t t? ? ? ?? 是前提變量 。以下在不引起混淆的情況下記 ( ())ih yt為 ih 。 沿著系統(tǒng)( 5)的軌線,對 ()Vt求差分,可得到: , , 1 , , 112, , 1 , , 1( ) ( 1 ) ( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TTss T T Ti j l m n p ij l m n pi j l m n pss T T T Ti j l m n p ij l m n p ij l m n pi j l m n pV t x t P x t x t P x th h h h h h x t P x t x t P x th h h h h h x t P P x t x t P x t????? ? ? ? ?? ? ? ?? ? ? ? ? ? ?????( 9)由引理 1 可知: T T T Tij l m n p ij l m n p ij l ij l m n p m n pP P P P? ? ? ? ? ? ? ? ? ? ? ( 10) 把 ( 10 )帶入( 9 ) 中 , 可 以 得 到 :, , 1( ) ( ) ( ) ( ) ( )s T T Ti j l ijl ijli j lV t h h h x t P x t x t P x t?? ? ? ? ?? ( 11) 考慮: ( c os si n ) ( c os si n )( c os ) ( c os ) ( si n ) ( si n ) ( c os ) ( si n ) ( si n ) ( c os ) TTijl ijl i i j l j i j i i j l j i jT T T Ti i i j l j i i i j l j i j iT T Ti i j i j l j i j i j i j l jP A B F C N P A B F C NA PA B F C PA A P B F C N PAA P N B F C P N N P B F C? ? ? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ?? ? ?2 2 2 2c os ( ) ( ) si nTTj i j l i j l j i iB F C P B F C N PN? ? ? ??? ( 12) 由引理 1 可知: 2 2 12 2 1( c os ) ( c os ) c os ( ) ( ) ,( si n ) ( si n ) si n ,( c os ) ( si n ) ( si n ) ( c os ) T T T Ti j l j i i i j l j ij j i i ij i j l i j lT T T Ti j i i i j ij j i i ij i iTTi j l j i j i j i j l jB F C PA A P B F C A PA B F C P B F CN PA A P N A PA N PNB F C P N N P B F C? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ???? ? ?? ? ??2 2 2 2 si n ( ) ( ) c os .TTj i j l i j l j i iB F C P B F C N PN? ? ? ??? ( 13) 把( 13)帶入( 11)式,可得: , , 1( ) ( ) ( ( ) ( ) ) ( )s T T T Ti j l i i i j l i j l i ii j lV t h h h x t a A P A b B F C P B F C b N P N P x t?? ? ? ? ?? ( 14) 根據(jù) Schur 補定理,( 7)等價于: 1 1 1( ) ( Q ) 0T T Ti i i j l i j l i iQ aQ A Q A Q b B F C Q Q B F C bQ N Q N Q? ? ?? ? ? ? ? ( 15) 對( 15)分別左、右乘 P 且 1PQ?? ,則可知: ( ) ( ) 0T T Ti i i j l i j l i iP a A P A b B F C P B F C b N P N? ? ? ? ? ( 16) 從而可知 ( ) 0Vt??,所以可知系統(tǒng)( 5)是漸近穩(wěn)定的。 。 參考文獻: [1] and Souza, Delayeddependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach [J]..IEEE Trans. Auto. Cont., 1997, 42(9):11441148 [2] and , Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach [J]. IEEE Trans. Fuzzy Syst., 2020, 18(2): 200211. [3] , Robust stability and stabilization for uncertain TakagiSugeno fuzzy timedelay systems [J]. Fuzzy Sets and Syst., 2020, 158(4): 115134 [4] , et al, Robust H∞ fuzzy static output feedback control of TS fuzzy systems with parametric uncertainties [J]. Fuzzy Sets and Syst., 2020, 158:135146. [5] , , , et al. Static output feedback stabilization for nonlinear interval timedelay systems via fuzzy control approach [J]. Fuzzy Sets and Syst2020, 148(3): 395410. [6] , , . Su, et al. Robust static outputfeedback stabilization for nonlinear discretetime systems with time delay via fuzzy control approach[J]. IEEE Trans. Fuzzy Syst, 2020,13(2): 263272. [7] and . Delaydependent guaranteed cost control for TS fuzzy systems with time delays [J]. IEEE Trans. Fuzzy Syst., 2020, 12(2): 236249. [8] and , Robust H∞ nonlinear control via fuzzy static output feedback [J]. IEEE Trans. Circuits Syst., 2020, 50(11): 14941502. [9] and , Robust H∞ static output feedback control of fuzzy systems: an LMI approach [J]. IEEE Trans. Syst., Man, Cybern, 2020, 36: 216222. [10] and , An iterative solution to dynamic output stabilization and ments on “Dynamic output feedback controller design for fuzzy systems”[J]. IEEE Trans. Syst., Man, Cybern, 2020, 34: 679681. [11] , Nonlinear systems: Application to Bilinear control [M]. Englewood Cliffs, NJ: PrenticeHall, 1991 [12] , and Zheng Y, Global stabilization for bilinear systems with timedelay[C]. IEE Proceedings of part D: Control Theory Applications, 2020, 149(1):8994 [13] Basic M, Cannon M and Kouvaritakis B, Constrained control of SISO bilinear systems with timedelay [J]. IEEE Trans. Auto. Cont., 2020, 48(8):14431447 [14] and , TS fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems [J]. IEEE Trans. Fuzzy Syst., 2020, 3(15):494505 [15] and , Robust fuzzy control of a class of fuzzy bilinear systems with timedelay [J]. Chaos, Solitons and Fractals (2020), doi: