【摘要】解直角三角形(2)在直角三角形中,除直角外,由已知元素,求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o(3)邊角之間的關(guān)系:ACBabctanA=absinA=
2024-11-21 04:44
【摘要】復(fù)習(xí)十一解直角三角形應(yīng)用(二)復(fù)習(xí)目標(biāo):系及解直角三角形的方法;相關(guān)的應(yīng)用性問題;合題.知識(shí)要點(diǎn):?.、平行四邊形的面積計(jì)算公式?.檢測練習(xí):,AB是⊙O的直徑,BC是⊙O的一條弦,且BC:AB=4:5,D是CAB上的一點(diǎn),求cos
2024-11-19 12:02
【摘要】三邊之間的關(guān)系a2+b2=c2(勾股定理);銳角之間的關(guān)系∠A+∠B=90o邊角之間的關(guān)系(銳角三角函數(shù))tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依據(jù)2、30°,45°,60
2024-11-18 21:41
【摘要】第一章直角三角形的邊角關(guān)系解直角三角形知識(shí)回顧一個(gè)直角三角形有幾個(gè)元素?它們之間有何關(guān)系?(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)銳角之間的關(guān)系:∠A+∠B=90o;(3)邊角之間的關(guān)系:sinA=accosA=tanA=ACBa
2024-11-21 02:23
【摘要】第五章解直角三角形1.在ABCRt?中,???RtC,用邊長之比表示A?的四個(gè)三角函數(shù)是:?Asin?Acos?tgA?ctgA2.已知角?的終邊經(jīng)過點(diǎn))2,3(p,則??sin,??cos
2024-11-11 07:34
【摘要】回顧與思考Rt△ABE中,∠C=90°,BC=a,AC=b,AB=c,則SinA=,sinB=,cosA=,cosB=,tanA=,tanB=。?你能說出它們具有的性質(zhì)嗎?BCAac
【摘要】解直角三角形應(yīng)用經(jīng)典AB12千米PCDG60°圖1,一架飛機(jī)在空中P處探測到某高山山頂D處的俯角為60°,此后飛機(jī)以300米/秒的速度沿平行于地面AB的方向勻速飛行,飛行10秒到山頂D的正上方C處,此時(shí)測得飛機(jī)距地平面的垂直高度為12千米,求這座山的高(),水壩的橫斷面是梯形,背水坡AB的
2025-07-22 08:17
【摘要】例題1、如圖所示的工件叫做燕尾槽,它的橫斷面是一個(gè)等腰梯形,∠B叫做燕尾角,AD叫做外口,BC叫做里口,AE叫做燕尾槽深度.已知AD長180毫米,BC長300毫米,AE長70毫米,那么燕尾角B的大小是多少(精確到1,)?例題分析解:根據(jù)題意,可知BE=(BC—AD)=(30
2025-07-25 15:57
【摘要】解直角三角形應(yīng)用專題練習(xí) 一.解答題(共21小題)1.在數(shù)學(xué)實(shí)踐活動(dòng)課上,老師帶領(lǐng)同學(xué)們到附近的濕地公園測量園內(nèi)雕塑的高度.用測角儀在A處測得雕塑頂端點(diǎn)C的仰角為30°,再往雕塑方向前進(jìn)4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計(jì),結(jié)果不取近似值.)2.如圖,一艘海輪位于燈塔C的北偏東45方向,距離燈塔100海里的A處,它沿正南方向
2025-06-18 18:26