freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

淺談均值不等式的教學(xué)(完整版)

  

【正文】 x1y4yx+ ≥xy當(dāng)且僅當(dāng)4yx11=,即x=,y=時(shí)等號(hào)成立。x2所以當(dāng)x=ymin(三)、忽略“=”號(hào)成立的可能性∈R)的最小值。x(x+4)(x+9)x2+13x+3636錯(cuò)解:y===13+x+≥xxx當(dāng)且僅當(dāng)x =36即x時(shí)取等號(hào)。例4.在ΔABC中,若三邊a,b,c滿足條件(a+b+c)3=27abc,試判定三角形ABC的形狀。當(dāng)要證的不等式具有上述特征時(shí),考慮用均值不等式證明。例1.已知a,b,c為不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2):觀察要證不等式的兩端都是關(guān)于a,b,c的3次多項(xiàng)式,左側(cè)6項(xiàng),右側(cè)6項(xiàng),左和右積,具備均值不等式的特征。分析:(a+b+c)3=27abc,具有三元均值不等式的結(jié)構(gòu)特征,且屬均值不等式的特貳例(取等號(hào)情形),所以有下面解法。叁所以當(dāng)時(shí),y的最小值為25,此函數(shù)沒(méi)有最大值。錯(cuò)解:因?yàn)椤菟詙min =2,即,找不到這樣的x。xy36所以當(dāng)x=,y=時(shí),+ 的最小值為9。3,則函數(shù)f(x)=(x3)+、b206。4第三篇:均值不等式及其應(yīng)用教師寄語(yǔ):一切的方法都要落實(shí)到動(dòng)手實(shí)踐中高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案均值不等式及其應(yīng)用一.考綱要求及重難點(diǎn)要求:(?。?,難度為中低檔題,.考點(diǎn)梳理a+:179。()(a,b206。2a21179。ab+bc+ac3考向三、均值不等式的實(shí)際應(yīng)用例小王于年初用50萬(wàn)元購(gòu)買(mǎi)一輛大貨車(chē),第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,考慮將大貨車(chē)作為二手車(chē)出售,若該車(chē)在第x年年底出售,其銷(xiāo)售價(jià)格為25x萬(wàn)元(國(guó)家規(guī)定大貨車(chē)的報(bào)廢年限為10年).(1)大貨車(chē)運(yùn)輸?shù)降趲啄昴甑?該車(chē)運(yùn)輸累計(jì)收入超過(guò)總支出?(2)在第幾年年底將大貨車(chē)出售,能使小王獲得的年平均利潤(rùn)最大?)(利潤(rùn)=累計(jì)收入+銷(xiāo)售收入總支出)變式訓(xùn)練:如圖:動(dòng)物園要圍成相同面積的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成。a恒成立,則a的取值范圍是___________。二、教學(xué)目標(biāo):知識(shí)與技能:(1)掌握均值不等式以及其成立的條件;(2)能運(yùn)用均值不等式解決一些較為簡(jiǎn)單的問(wèn)題。此外還將繼續(xù)采用個(gè)人和小組積分法,調(diào)動(dòng)學(xué)生積極參與的熱情。① 適用范圍a,b206。等待兩名同學(xué)做完后,適時(shí)終止討論,學(xué)生各就各位。待學(xué)生討論過(guò)后,先通答案,a=2時(shí)扇形面積最大值為ctanx(0xp)。R且a+b=1,求a最大值及此時(shí)a,、a0,b0,且求函數(shù)f(x)=1a+9b=1,求a++1x+1(x1)的最小值。An163。abc(10)對(duì)實(shí)數(shù)a,b,c,有均值不等式的證明:方法很多,數(shù)學(xué)歸納法(第一或反向歸納)、拉格朗日乘數(shù)法、琴生不等式法、排序不等式法、柯西不等式法等等用數(shù)學(xué)歸納法證明,需要一個(gè)輔助結(jié)論。An+nA(n1)Bn注:引理的正確性較明顯,條件A≥0,B≥0可以弱化為A≥0,A+B≥0(用數(shù)學(xué)歸納法)。R+,當(dāng)且僅當(dāng)a1=a2=L=an時(shí)取“=”號(hào)僅是上述不等式的特殊情形,即D(1)≤D(0)≤D(1)≤D(2)由以上簡(jiǎn)化,有一個(gè)簡(jiǎn)單結(jié)論,中學(xué)常用均值不等式的變形:(1)對(duì)實(shí)數(shù)a,b,有a2+b2179。七、板書(shū)設(shè)計(jì):由于本節(jié)采用多媒體教學(xué),板書(shū)比較簡(jiǎn)單,且大部分是學(xué)生的展示。(四)本節(jié)小結(jié)小結(jié)本節(jié)課主要內(nèi)容,知識(shí)點(diǎn),由學(xué)生總結(jié),教師完善,不外乎: a+b179。其次,老師根據(jù)剛才巡視掌握的情況,結(jié)合多媒體進(jìn)行有針對(duì)性的講解(重點(diǎn)應(yīng)強(qiáng)調(diào)均值定理的幾何解釋:半徑不小于半弦,以及用三角形相似或射影定理的幾何證明過(guò)程,使定理“形化”),進(jìn)一步加深學(xué)生對(duì)定理的認(rèn)識(shí)及應(yīng)用能力,初步掌握用均值定理求函數(shù)最值時(shí)要注意“一正、二定、三相等”第二步:課內(nèi)探究(二)精講點(diǎn)撥 :求函數(shù)f(x)=2x+x3x(x0)的最大值,及此時(shí)x的值。=2對(duì)嗎?② 等號(hào)成立的條件,當(dāng)且僅當(dāng)__________時(shí),________=_________ ③ 語(yǔ)言表述:兩個(gè)___數(shù)的____平均數(shù)_____它們的_______平均數(shù) ④ 把不等式_________________又稱為均值或________不等式 ⑤ 數(shù)列觀點(diǎn):兩個(gè)正數(shù)的______中項(xiàng)不小于它們的_____中項(xiàng)。充分體現(xiàn)學(xué)生是主體,具體如下:課前預(yù)習(xí)學(xué)會(huì);、明確重點(diǎn)、解決疑點(diǎn);分組討論積
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1