freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

土木工程專業(yè)英文翻譯(完整版)

  

【正文】 evealed that both the modulus of elasticity of FRP and the relative reinforcement ratio play an important role in the accuracy of the formulas. CE Database subject headings: Concrete, reinforced。 crI =moment of inertia of the cracked section transformed to concrete。 M/EI=curvature of the section。所有構(gòu)件在四點(diǎn)彎曲加載配置下進(jìn)行測(cè)試單調(diào)遞增的應(yīng)用荷載。 介 紹 : 纖維復(fù)合材料鋼筋目前可用來(lái)代替容易受到侵蝕性腐蝕破壞的鋼筋混凝土結(jié)構(gòu)。 ACI 318 ( ACI 1999)和 CSA 94 ( CSA 1998)推薦使用有效慣性矩 eI 計(jì)算鋼筋混凝土構(gòu)件破壞時(shí)的撓度。許多研究人員( Benmokrane 等 1996。 ISIS Design Manual M0301 (里茲卡拉和穆夫提 2021)建議使用完全不同于先前方程式的形式計(jì)算有效慣性矩。慣性矩公式延用公式( 7) ,但對(duì)降低系數(shù) β 進(jìn)行了修改,降低系數(shù)取決于彈性模量相對(duì)配筋率,見(jiàn) 以下方程 : 51 ?????????? balF R P??? ( 10) 曲率法 彎矩 曲率法是進(jìn)行結(jié)構(gòu)分析中計(jì)算撓度的首選。 。 彎矩 曲率法由法薩和 GangaRao( 1992)提出 ,并通過(guò)四點(diǎn)彎曲加載配置得出假定的曲率圖,定義了跨中撓度。通過(guò)用大量的梁來(lái)進(jìn)行撓度試驗(yàn),這些梁是由不同類型的 FRP材料制作的,大量試驗(yàn)所得的 eI ,與方程式( 6)所得的 eI 相同。Toutanji 和 薩菲 2021)認(rèn)為有效慣性矩方程的基本形式應(yīng)盡可能接近于原始的布蘭森方程 ,為了它容易被使用而且設(shè)計(jì)師對(duì)它比較熟悉。 有效慣性矩 eI 是基于半經(jīng)驗(yàn)的考慮 ,雖然當(dāng)它受到復(fù)雜的加載和邊界條件時(shí),與傳統(tǒng)鋼筋混凝土構(gòu)件有適用性問(wèn)題 ,但是它在大多數(shù)實(shí)際應(yīng)用中取得了令人滿意的結(jié)果 。然而 ,玻璃鋼的彈性模量通常比鋼低得多。分析表明 ,FRP的彈性模量和相對(duì)配筋率在公式的準(zhǔn)確性中發(fā)揮重要作用。ASCE, ISSN 10900268/2021/3183–194. FRPRC 構(gòu)件的撓度計(jì)算公式的評(píng)論 卡洛斯 .莫塔 1。 Brown and Bartholomew 1996。 Deflection。 Fiberreinforced polymers。 and eI =effective moment of inertia. Research by Benmokrane et al. (1996)suggested that in order to improve the performance of the original equation, Eq.(1) will need to be further modified. Constants to modify the equation were developed through a prehensive experimental program. The effective moment of inertia was defined according to Eq.(2) if the reinforcement was FRP gcraae IIMMIMMI ??????? ?????????????????? crg3cr ( 2) Further research has been done in order to define an effective moment of inertia equation which is similar to that of Eq.(1), and converges to the cracked moment of inertia quicker than the cubic equation. Many researchers (Benmokrane et al. 1996。 and m=bending moment due to a unit load applied at the point where the deflection is to be calculated. A moment–curvature approach was taken by Faza and GangaRao (1992), who defined the midspan deflection for fourpoint bending through the integration of an assumed moment curvature diagram. Faza and GangaRao (1992) made the assumption that for fourpoint bending, the member would be fully cracked between the load points and partially cracked everywhere else. A deflection equation could thus be derived by assuming that the moment of inertia between the load points was the cracked moment of inertia, and the moment of inertia elsewhere was the effective moment of inertia defined by Eq.(1). Through the integration of the moment curvature diagram proposed by Faza and GangaRao (1992), the deflection for fourpoint loading is defined according to the following equation: ? ?eecrcrec IaILIaIIEPa 222m a x 123824 ???? ( 12) where ɑ =shear span. Eq.(12) has limited use because it is not clear what assumptions for the application of the effective moment of inertia should be used for other load cases. However, it worked quite accurately for predicting the deflection of the beams tested by Faza and GangaRao (1992). The CSA S80602 (CSA 2021) suggests that the moment–curvature method of calculating deflection is well suited for FRP reinforced members because the moment–curvature diagram can be approximated by two linear regions: one before the concrete c
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1