【正文】
meday have in human life. In both microscopic and macroscopic scales, from DNA structure to the symbolism in human achievement, our progress along the spiral curve has been enormous. Today39。盡管醫(yī)療服務的根本目的就是在于使病人更加健康,但由于經(jīng)濟因素的制約,使得醫(yī)療服務的管理問題上無法正常運作,不但沒有把基本的要求做好,甚至違背了醫(yī)療服務的預期目的。而另一種應用于微創(chuàng)外科手術的系統(tǒng)是基于利用運動感知反饋原理。 ROBODOC 系統(tǒng)通過計算機圖像技術收集病變圖像,對手術進行預測。腸腔鏡的使用原理就是一個微型機器人探頭以半自主的方式進入到腸腔管道進行內部操作。在連續(xù)的接觸過程中保持適當?shù)牧Χ?。在這些手術過程中,利用計算機技術將微觀的操作通過按比例縮減的方法使這種操作轉換成人所能感知的程度,這樣不僅能提高手術的質量,而且很可能創(chuàng)造出新的微觀外科手術途徑。機器人系統(tǒng)配備的輔助工具常見的有超聲波探針,攝像頭, XRAY 發(fā)生器以及有 6 個自由度的新型 CYBERKNIFE 裝置。 典型的機器人輔助作業(yè)有:手術工具的定位及顯微定位,軌跡的設計以及精確引導探針進行作業(yè)。相比之下,機器人的優(yōu)越性包括能精確定位和復位裝置、工作過程穩(wěn)定,重復手術一致性好,還可以控制手術過程中的各種參數(shù)如力 度、持久力、強度等;也存在著許多不足,包括隨機判斷能力與空間位置的感知能力差,適應性不好,對故障敏感。無論從微觀世界還是宏觀世界,從 DNA結構的發(fā)展過程到影響人類文明的重大發(fā)明,人類都是在以這種螺旋式的方式盤旋上升,并不斷進步。 醫(yī)療器械的發(fā)展也有著相似的過程,但在技術上還有待完善。 指導教師評語: 翻譯基本正確,中文敘述通順。從另一個角度來說,心理學上解釋為人類本能 的一種表現(xiàn),對新事物的接受總需要一些時間。盡管機器人本來在手術過程就扮演輔助的角色,但從某種程度上來說加以半自 主性的內窺技術勢必效果回更好。也就是說,新技術在解決實際問題的時候反而是弊大于利。 機器人技術在外科環(huán)境中提供了良好的輔助性,它們的應用提高了手術的精確度和靈活度,減輕了醫(yī)生由于生理因素而產(chǎn)生的顫抖,并能擴展增加機械手減少工作量,從而減少手術中操作人員,所以機器人技術在外科 領域中得到了越來越廣泛的應用。 精確引導探針進行活體組織檢查 據(jù)報道:一種被命名為 MINIRCM 的小型機器人系統(tǒng)在外科手術中精確引導探針進行手術操作。 位置移動和力度范圍 現(xiàn)代神經(jīng)外科手術由于手術工具在手術過程中操作范圍太小以致于那些技術熟練的醫(yī)生也無法得心應手。 ZEUS 系統(tǒng)對手術的實時控制排除了醫(yī)生手部的顫抖,并能使醫(yī)生在大范圍內自然的移動手的位置來實現(xiàn)人體內部手術操作的微觀運動。 腹腔鏡 LARS 系統(tǒng)的主要功能是配合腹腔鏡進行圖像收集并診斷,提高了末端執(zhí)行器的作業(yè)精度。通過人在操 縱臺上實施操作,加以機器人輔助技術使得手術作業(yè)環(huán)境更加寬敞,并為人類對外科手術的認識打開了新的天地。機器人輔助設備通過按比例縮減人工操作時的力和力矩進行微創(chuàng)外科手術,是得人操作機器人手臂進行手術且簡單自如。據(jù)報道:機器人位置控制系統(tǒng)通過對由呼吸運動而使腦部腫瘤位置的隨機變化進行分析,然后給予補償,這樣提高了 CYBERKNIFE 在手術過程中精確度和相對安全程度。 即使這種技術能成功的應用與外科領域,機器人輔助系統(tǒng)也將不會完全取代和制約外科醫(yī)生;它們使得外科手術有了重大的改觀,機器人系統(tǒng)使得各種有效的輔助設備得到綜合的應用,使得在手術環(huán)境中各種儀器和諧統(tǒng)一的配合對病人實施手術操作,這一切對于病人的手術后效果都是大大有 利的。m peak to peak at the handheld instrument tip. Robots developed for instrument positioning 。 they will help them to achieve their transmutation toward a higher being capable of harmoniously melting the human body holistic approach and the robotic synthesizing and bine enormous capacities, all for the good of the patien. 。m. Currently, this technology is limited to animal models but if transposed to the operating room in human subjects, such precision would be attainable only through robotic assistance. Scaling small motions and forces to the range of human perception may provide not only improved performance but also potentially the creation of novel microsurgical procedures. A telemanipulator RAMS (RobotAssisted MicroSurgery) scales down the surgeon39。s Perspective Alim Louis Benabid and Wieslaw Nowinski INTRODUCTION Since its inception, neurosurgery has continually distinguished itself as the most innovative field among surgical specialties, possibly secondary to the inherently innovative nature of the an system it serves. Driven by changes in patient needs, technological advances, and significant progress in our understanding of the neurosciences, neurosurgery has maintained an everchanging face to the extent that, at times, even those within the field find it difficult to recognize. As with rapid change in any aspect of life, a wide array of attitudes are elicited. Denial of progress, and tenacity toward that which is familiar, is certainly the safest, easiest response and, rhinencephalically speaking, may be the most physiological attitude manifested. Arising from the temporal lobe, disbelief and disorientation are also frequently encountered responses to change. These attitudes, however, are often overe through the acquisition of knowledge and experience. The frontal lobes are responsible for balancing inhibition with disinhibition. They serve as the source of curiosity housing the motor cortex necessary to engage in exploratory behavior, the planning areas to evaluate riskbearing trials, and the sanctuary for plex decision making. Because of the frontal lobes, we move forward down a path toward invention, trial, and ultimately, final design. The history of surgical tools follows a similar path and is far from being perfected. The introduction of novel tools into the operating room through the form of puter informatics, online radiology review, and intraoperative imaging has revolutionized both the design and the ambience of the operating room. This, however, is only the beginning. Progress is more than the simple acquisition of vast amounts of highly sophisticated equipment and the teams of specialists required to operate it. The entire concept has to be rethought to truly achieve a higher level of structure. The overwhelming amount of information now available to the neurosurgeon must be seamlessly integrated and coupled with intraoperative machinery capable