【正文】
3, 4, 6, 7, 8, 9 and 10. It was found that eight and ten QTLs detected Abstract VII in different environments for the two populations respectively, were located in the same geic regions, and these stable QTLs were distributed on chromosome 1, 4, 6, 7, 9 and 10. Through the parison of the two populations’results, five congruent QTLs were identified for anthocyaninrelated traits in , , , and respectively. Furthermore, the distribution of QTLs for these traits showed a high concentration of QTLs in few chromosome regions. A number of QTLs which were located in and were clustered. For most of these QTLs, the contribution rate of phenotypic variation was more than 10%. The two chromosome regions were considered to have major genes mainly controlling anthocyaninralated traits. 5. QTL mapping for Fe, Zn conventrationrelated traits A total of16 and 15 QTLs were identified in CQ and YN respectively, some of which were identical in different environments. The mon regions for same trait at different environments were 3 and 5 in MuSF2:3 and MoSF2:3 respectively. Compared with the IBM2 20xx Neighbors Frame6, the distribution and effect of some QTLs in two populations were highly consistent and many QTLs on chromosome 2, 7 and 9 were detected in both populations. Moreover, several mineral QTLs colocalized with each other for both populations such as the QTLs for ZnK, ZnC, FeK and FeC on chromosome 2, QTLs for Znk, FeK and FeC on chromosome 9 and QTLs for ZnK and ZnC on chromosome 7, which probably were closely linked to each other, or were the same pleiotropic QTL. The colocalizations may explain the phenotypic correlations among traits. 6. Fine mapping of main QTL AC6 that control anthocyanin content of maize kernel and prediction for candidate genes For BC4F2MuS and BC4F2MoS, a total of 6 and 7 polymorphic SSR markers were used to construct linkage map of target region on chromosome 6 (bin ), respectively. A major gene AC6related to anthocyanin content of maize kernel was further located in the interval umc1857umc1014 and umc1979umc1014 in BC4F2MuS and BC4F2MoS respectively. To fine map the gene AC6, the selfdesigned primers for the target gene were used and AC6 was mapped between S8 and umc1014with geic distance 518Kb. In this region, a heme add oxygen enzyme gene (pltranscription factor), which is a transcription factor involved in the regulation of maize pigment. The of two extreme individuals of BC4F2 (“mutant plant” (SDMm) and “wild plant” (SDMw)) were amplified, sequenced and pared. The PCR products electrophoretic patterns and base sequence of SDMm and SDMw were pletely concordant. The results showed was not the candidate gene of AC6. Perhaps, the high anthocyanin content trait may be 西南大學(xué)博士學(xué)位論文 VIII controlled by other gene or caused by promoter mutation of . 7. Further mapping of the other QTL AC10 that control anthocyanin content of maize For BC4F2MuS, a total of 7 polymorphic SSR markers were used to construct linkage map of target region on chromosome 10 (bin ). Two QTLs related to COV (colur of leaf vein) were further located in the interval IDP7852IIDP8526 and S44bnlg1028. One QTL related to COA (colur of leaf auricle) was fuether mapped in the intervalS44bnlg1028. No QTL related to ACK (anthocyanin content of kernel) was detected. In order to fine mapping the major gene AC10,enoughpolymorphic marker is crucial. 8. Epistasis analysis of AC6 and AC10 Double segment substitution line (DSSL) of AC6 and AC10 was used to analyze additive, dominant and epistatic effects of the two major QTLs. The additive effect and dominant effect of AC6 was relatively greater than AC10,but the epistatic effects of AC6 and AC10played a major role in anthocyanin content of maize kernel. Key words: maize (zea mays L)。 玉米籽粒中的花色苷含量主效基因 AC10 的驗(yàn)證和進(jìn)一步準(zhǔn)確定位 在 MuSBC4F2 群體中,加大標(biāo)記密度,構(gòu)建了包含 7 對(duì) SSR 標(biāo)記的目標(biāo)區(qū)段遺傳連鎖圖譜,結(jié)合基因型和表型,對(duì)第 10 染色體上的另一個(gè)與玉米籽粒中花色苷含量相關(guān)的主效 QTL(命名為 AC10)進(jìn)行了進(jìn)一步定位。兩個(gè)群體檢測(cè)到的 QTL 在標(biāo)準(zhǔn)圖譜( IBM2 20xx Neighbors Frame6)上進(jìn)行整合,結(jié)果表明位于第 9 三條染色體上的 QTL 在兩個(gè)群體中均能檢測(cè)到,而且位置和效應(yīng)高度一致。 每 條染色體包 含有 11~24 個(gè) SSR 標(biāo)記 , 平均為 16 個(gè) ; MoS群體 ,構(gòu)建了含 170個(gè)標(biāo)記位點(diǎn)的玉米基因組的 12個(gè)連鎖群 ,連鎖群全長 1, cM, 標(biāo)記間平均距離為 cM。兩個(gè)相關(guān) F2:3群體的表型表現(xiàn)一致:均表現(xiàn)為連續(xù)分布,但不完全符合嚴(yán)格的正態(tài)分布,偏度和峰度均較大,說明花色苷含量相關(guān)性狀均為數(shù)量性狀,且受主效基因控制。黑(紫)玉米中富含的花色苷和微量元素對(duì)機(jī)體具有多種生理生化功能。論文中引用他人已經(jīng)發(fā)表或出版過的研究成果,文中已加了特別標(biāo)注。China March, 20xx 獨(dú)創(chuàng)性聲明 學(xué)位論文題目: 本人提交的學(xué)位論文是在導(dǎo)師指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。其功能性品質(zhì)作為重要的營養(yǎng)品質(zhì)之一,對(duì) 防治疾病、增進(jìn)人體健康起著非常重要的作用,是開發(fā)天然保健食品的重要原料,同時(shí)也廣泛應(yīng)用于醫(yī)藥、化妝品等行業(yè)中。 SDM 籽粒和穗軸中的花色苷含量、黑色素含量、總酚含量均極顯著高于 Mo17 和木 6,類黃酮含量 SDM 與 Mo17 和木 6 差異均西南大學(xué)博士學(xué)位論文 II 不顯著。 F2 群體連鎖圖譜的構(gòu)建 MuS群體構(gòu)建了含 160個(gè)標(biāo)記位點(diǎn)的玉米基因組的 13個(gè)連鎖群 ,總的遺傳距離為 1, cM, 標(biāo)記間的平均距離為 cM。在 MuS 和 MoS 中分別發(fā)現(xiàn) 3 個(gè)和 4 個(gè)染色體區(qū)域存在環(huán)境鈍感 QTL,位于第 10 染色體上。推測(cè)該突變性狀可能是由其它基因發(fā)生突變或者是由該基因啟動(dòng)子序列發(fā)生突變?cè)斐?。?dāng) AC6 和 AC10 同時(shí)存在時(shí),兩個(gè)基因會(huì)發(fā)生互作,使得玉米籽粒中的花色苷含量大大提高。 Weller, 1986。區(qū)間作圖法的原理是目標(biāo)性狀對(duì)后驗(yàn)概率的回歸,而與此類似的回歸分析法則是對(duì)先驗(yàn)概率的回 歸( Haley and Knott, 1992。 1999。 Zhang and Xu, 20xx。 Wu et al., 20xx。 Schadt et al., 20xx),但是由于表達(dá)譜構(gòu)建成本偏高使其應(yīng)用受到了限制。這包括高代互交系( Davasi and Soller, 1995。 遺傳背景一致,精細(xì)定位準(zhǔn)確,快速,可估計(jì)基因間 上位 性效應(yīng)。 群體太大使得分子標(biāo)記檢測(cè)量大,且存在背景干擾,不能檢測(cè)到上位性效應(yīng)。 遺傳背景一致,精細(xì)定位準(zhǔn) 確性較高,可檢測(cè)上位性效應(yīng)。 玉米基因組大小與人 類相當(dāng),長達(dá) 2500Mb,包含約 5000 個(gè)基因,其長度和基因數(shù)目分別為水稻的 6 倍和 倍 (Martienssen et al., 20xx。 Meyers et al., 20xx。玉米與其他禾本科植物的比較基因組學(xué)研究的最多的是水稻,雖然水稻和玉米在 6000萬年前就開始分化,二者仍然 有較高的同源性,因此水稻基因組學(xué)的成果有助于玉米基因組學(xué)的研究( Sasaki, et a1.,20xx; 黎裕,王天宇 , 20xx),比如以西南大學(xué)博士學(xué)位論文 6 水稻基因?yàn)橐罁?jù),鑒定了植物扛逆基因;發(fā)現(xiàn)了植物識(shí)別和抵抗病原菌的新途徑和新基因;重新認(rèn)識(shí)了后生基因沉默的機(jī)理。玉米屬于禾本科作物,對(duì)玉米進(jìn)行比較基因組學(xué)研究的主要目的是利用分子標(biāo)記進(jìn)行遺傳作圖從而比較玉米與其他禾本科植物的基因組, 比較作圖的意義在于:( 1)研究不同物種的進(jìn)化線索;( 2)通過比較同源性推測(cè)未知基因的功能;( 3)促進(jìn)基因作圖。因此,玉米基因組如此之大 主要是重復(fù)序列所致,與基因數(shù)量或基因序列無關(guān)。 結(jié)構(gòu)基因組學(xué) 結(jié)構(gòu)基因組學(xué)是基因組學(xué)一個(gè)必不可少的組成部分,主要包括遺傳圖譜,物理圖譜和序列圖譜三個(gè)層面。 SSSLs 類似近等基因系通過多代回交獲得,回交過程中需要通過初級(jí)定位的 QTL對(duì)目標(biāo)性狀進(jìn)行跟蹤選擇,除了目標(biāo) QTL所在的染色體片段完整的來自供體親