【摘要】第十二章分子的對稱性對稱操作:物體變換,其最后的位置與最初位置是物理上不可分辨的,以及物體中各對的點的距離保持不變;對稱元素與對稱操作的區(qū)別:對稱元素是一個幾何上存在的物,相對于它的是進行一個對稱操作。對稱元素:旋轉(zhuǎn)軸對稱操作:旋轉(zhuǎn)對稱元素與對稱操作分子中的四類對稱操作及相應的對稱元素如下
2025-01-14 09:01
【摘要】圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-22 15:49
【摘要】一.晶體的宏觀對稱性2.宏觀對稱元素的組合和32個點群晶體的對稱性有宏觀對稱性和微觀對稱性之分,前者指晶體的外形對稱性,后者指晶體微觀結(jié)構(gòu)的對稱性。本節(jié)我們主要學習晶體的宏觀對稱性。主要內(nèi)容:1.晶體的宏觀對稱元素4.十四種空間點陣3.特征對稱元素與7個晶系hnncs??????
2024-10-12 14:14
【摘要】?1、掌握線段垂直平分線的判定定理;?2、能從集合的角度來理解線段垂直平分線;?3、會用線段垂直平分線的性質(zhì)與判定解決有關(guān)問題;?觀看動畫;?可以得到什么結(jié)論??內(nèi)容:到線段兩端距離相等的點,在這條線段的垂直平分線上;PAPBPAB??點在的垂直平分線上?如圖,AM
2024-11-30 03:55
【摘要】觀察與思考如圖,△ABC中,如果過一邊上任一點D,作另一邊的平行線DE,截去一個角后,所得的是什么四邊形?一組對邊平行,另一組對邊不平行的四邊形叫做梯形.你能由等腰三角形得到等腰梯形嗎?AEBCDEBCD在梯形中,平行的邊稱為底,短的為上底,長的為下底,不平行的邊稱為腰,底和腰的
2024-11-09 05:34
【摘要】圓的對稱性●O③AM=BM,?AB是⊙O的一條弦.?你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?與同伴說說你的想法和理由.駛向勝利的彼岸?作直徑CD,使CD⊥AB,垂足為M.●O?右圖是軸對稱圖形嗎?如果是,其對稱軸是什么??我們發(fā)現(xiàn)圖中有:ABCDM└?由
2024-11-28 01:06
【摘要】2021/1/6第三章圓第二節(jié)圓的對稱性(一)駛向勝利的彼岸2021/1/6問題:前面我們已探討過軸對稱圖形,哪位同學能敘述一下軸對稱圖形的定義?我們是用什么方法研究軸對稱圖形的?I.創(chuàng)設(shè)問題情境,引入新課駛向勝利的彼岸2021/1/6Ⅱ.講授新課?圓是軸對稱圖形嗎
2024-11-30 08:16
【摘要】第四章分子對稱性Chapter4.MolecularSymmetryandIntroductiontoGroupTheory對稱性概念分子中的對稱操作與對稱元素分子點群分子對稱性與偶極矩、旋光性的關(guān)系分子的對稱性與偶極矩分子的對稱性與旋光性Conte
2025-05-02 12:08
【摘要】九年級數(shù)學圓的對稱性(一)班級姓名學號學習目標1.經(jīng)歷探索圓的對稱性(中心對稱)及有關(guān)性質(zhì)的過程.2.理解圓的對稱性及有關(guān)性質(zhì).3.會運用圓心角、弧、弦之間的關(guān)系解決有關(guān)問題.學習重點:中心對稱性及相關(guān)性質(zhì).學習難點:運用圓心角、弧、弦之
2024-11-28 12:37
【摘要】圓的對稱性(二)班級姓名學號學習目標1.理解圓的對稱性(軸對稱)及有關(guān)性質(zhì).2.理解垂徑定理并運用其解決有關(guān)問題.學習重點:垂徑定理及其運用.學習難點:靈活運用垂徑定理.教學過程一、情境創(chuàng)設(shè)(1)什么是軸對稱圖形?
2024-12-05 08:57
【摘要】第二章圓一石激起千層浪奧運五環(huán)樂在其中如圖是國際奧林匹克運動會旗的標志圖案.圓是到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA·OA圓也可以看成是一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心
2024-11-25 21:58
【摘要】猜一猜請同學們觀察屏幕上兩個半徑相等的圓。請回答:它們能重合嗎?如果能重合,請將它們的圓心固定在一起。O,然后將其中一個圓旋轉(zhuǎn)任意一個角度,這時兩個圓還重合嗎?O歸納:圓具有旋轉(zhuǎn)不變性,即一個圓繞著它的圓心旋轉(zhuǎn)任意一個角度,都能與原來的圓重合。因此,圓是中心對稱圓形,對稱中心為圓心。圓
2024-11-30 08:37