【摘要】......《等腰三角形的軸對稱性》(2) 一、選擇題1.如圖,已知OC平分∠AOB,CD∥OB,若OD=3cm,則CD等于( ?。〢.3cm B.4cm C. D.2cm2.△ABC中AB=AC,∠A=36
2025-06-25 22:37
【摘要】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【摘要】第一篇:等腰三角形 全等三角形 一、教學(xué)目標(biāo) 探索并掌握兩個三角形全等的條件:“ASA”“AAS”, 經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過對知識方...
2024-11-15 06:05
【摘要】八年級上冊等腰三角形(第4課時)課件說明?本節(jié)課在學(xué)習(xí)了軸對稱、等邊三角形的性質(zhì)及判定的基礎(chǔ)上,探究直角三角形的一條特殊性質(zhì),它反映了直角三角形中的邊角關(guān)系.本節(jié)課是等邊三角形性質(zhì)的簡單運(yùn)用,同時也為九年級學(xué)習(xí)銳角三角函數(shù)作了一定的知識儲備.?學(xué)習(xí)目標(biāo):1.探索含30°角
2024-11-24 15:53
【摘要】......等腰三角形考點(diǎn)一、等腰三角形的特征和識別⑴等腰三角形的兩個_____________相等(簡寫成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【摘要】初中數(shù)學(xué)八年級上冊(蘇科版)主備教師:吳潔華第3課時溫故而知新?,它的底邊恰好與腰相等,這樣的三角形又具有什么性質(zhì)??三邊相等的三角形叫做等邊三角形或正三角形.等邊三角形是特殊的等腰三角形,它除了具有等腰三角形的一切性質(zhì)外,還具有哪些
2024-11-30 04:08
【摘要】如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角度等邊)ABC2、如圖,下列推理正確嗎?ABCD21∵∠1=∠2∴BD=DC(等角對等邊)∵∠1
2024-11-24 17:30
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-18 12:57
【摘要】第十三章軸對稱等腰三角形等腰三角形第2課時等腰三角形的判定2022秋季數(shù)學(xué)八年級上冊?R等腰三角形的判定一個三角形有兩個角,則這兩個角所對的邊也(簡寫成“等角對”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-13 14:06
【摘要】第2課時等腰三角形的判定知識要點(diǎn)基礎(chǔ)練知識點(diǎn)1等腰三角形的判定△ABC中,∠A的相鄰?fù)饨鞘?0°,要使△ABC為等腰三角形,則∠B為(B)°°°或35°°,不可能是等腰三角形的是(B
2025-06-21 12:24