【摘要】3.2.2半角公式一。學(xué)習(xí)要點(diǎn):半角公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過(guò)程:復(fù)習(xí):升冪公式:降冪公式:新課學(xué)習(xí):1.半角公式2.萬(wàn)能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-18 16:43
【摘要】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a(chǎn)=bB.a(chǎn)≠bC.|a|=|b|D.a(chǎn)在c方向上的正射影的數(shù)量與b在c方向上的正射影的數(shù)量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
2024-11-27 23:43
【摘要】《向量數(shù)量積的運(yùn)算律》教學(xué)設(shè)計(jì)一、情景引入知識(shí)回顧:平面向量數(shù)量積的定義及幾何意義(學(xué)生回答)問(wèn)題導(dǎo)思:向量的數(shù)量積是否具有類(lèi)似于數(shù)量乘法那樣的運(yùn)算律?⑴交換律:ba?=;⑵結(jié)合律:??ba??==;⑶分配律:??cba??=。
2024-11-18 16:44
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實(shí)數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對(duì)空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2024-11-27 23:46
【摘要】系統(tǒng)抽樣一、基礎(chǔ)過(guò)關(guān)1.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號(hào).按編號(hào)順序平均分成20組(1~8號(hào),9~16號(hào),…,153~160號(hào)),若第16組應(yīng)抽出的號(hào)碼為125,則第一組中按此抽簽方法確定的號(hào)碼是
2024-12-08 05:55
【摘要】數(shù)列的遞推公式(選學(xué))1.?dāng)?shù)列{an}滿(mǎn)足an+1=an+n,且a1=1,則a5的值為().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知數(shù)列{an}的首項(xiàng)為a1=1,且滿(mǎn)
2024-11-27 23:54
【摘要】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運(yùn)算。學(xué)習(xí)過(guò)程[來(lái)源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁(yè)~79頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運(yùn)算:①已知軸l,取單位向
【摘要】§向量的減法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、如果把兩個(gè)向量的始點(diǎn)放在一起,則這兩個(gè)向量的差是以為起點(diǎn),為終點(diǎn)的向量。2、一個(gè)向量BA等于它的終點(diǎn)相對(duì)于點(diǎn)O的位置向量___減去它的始點(diǎn)相對(duì)于點(diǎn)O的位置向量___,或簡(jiǎn)記為
【摘要】綜合檢測(cè)二一、選擇題1.設(shè)集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∪B等于()A.{x|3≤x<4}B.{x|x≥3}C.{x|x>2}D.{x|x≥2}2.若函數(shù)f(x)=?????x2+1,x≤1,lgx,
2024-11-28 00:02
【摘要】綜合檢測(cè)一一、選擇題1.已知M={x|x2或x0},N={y|y=x-1},則N∩?RM等于()A.(1,2)B.[0,2]C.?D.[1,2]2.函數(shù)y=1log?4x-3?的定義域?yàn)?)A.(34,1)
2024-11-28 01:55
【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算。2、會(huì)用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁(yè)~102頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個(gè)向量的基線互相垂直,則稱(chēng)這兩個(gè)向量,
【摘要】學(xué)習(xí)目標(biāo)3.用向量證明平面幾何、解析幾何問(wèn)題的步驟。4.體會(huì)向量在解決問(wèn)題中的應(yīng)用,培養(yǎng)運(yùn)算及解決問(wèn)題的能力。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材117頁(yè)~122頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)用例,已知平行四邊形ABCD、E、E在對(duì)角線BD上,并且=BEFD.求證:AECF是平行四邊形
2024-11-19 06:26