【摘要】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2025-08-04 15:59
【摘要】第七講積分變換與微分方程?積分變換?拉普拉斯變換拉普拉斯變換函數(shù)函數(shù)名稱意義LaplaceTransform[expr,t,s]對expr的拉普拉斯變換InverseLaplaceTransform[expr,s,t]對expr的拉普拉斯逆變換LaplaceTransform[expr,{t1,t2,…
2024-10-16 20:10
【摘要】第八講線性微分方程(2)高等教育電子音像出版社寧波大學(xué)陶祥興等編本節(jié)內(nèi)容提要一、準(zhǔn)備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計算公式.四、拉氏變換及應(yīng)用.一、準(zhǔn)備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-08 05:36
【摘要】常微分方程習(xí)題集華東師范大學(xué)數(shù)學(xué)系
2025-06-24 15:07
【摘要】常微分方程學(xué)習(xí)輔導(dǎo)(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認(rèn)為是常微分方程中非常有用的基本解題方法之一,也是初學(xué)者必須接受的最基本訓(xùn)練之一。在本章學(xué)習(xí)過程中,讀者首先要學(xué)會準(zhǔn)確判斷方程的可積類型,然后要熟練掌握針對不同可積類型的5種解法,最后在學(xué)習(xí)
【摘要】可分離變量的微分方程第二節(jié)一階微分方程的一般形式:(,)yfxy??(,)(,)0PxydxQxydy??(變量與對稱)xy若將看作未知函數(shù),則有x若將看作未知函數(shù),則有y(,)((,)0)(,)dyPxyQxydxQ
2025-07-18 15:26
【摘要】第二節(jié)可分離變量的微分方程微分方程的類型是多種多樣的,它們的解法也各不相同.從本節(jié)開始我們將根據(jù)微分方程的不同類型,給出相應(yīng)的解法.本節(jié)我們將介紹可分離變量的微分方程以及一些可以化為這類方程的微分方程,如齊次方程等.內(nèi)容分布圖示★可分離變量微分方程 ★例1★例2 ★例3 ★例4★例5 ★例6 ★例7★邏輯
2024-10-04 14:33
【摘要】代入原方程,得解法:特點:.,,)1(??kyyy?及不顯含未知函數(shù))()(xPyk?令.,)()()1(knnkPyPy?????則)).(,),(,()1()(xPxPxfPknkn?????P(x)的(n-k)階方程),(xP求得,)()(次連續(xù)積分將kxPyk?可得通解.)
2025-04-29 05:06
【摘要】無窮級數(shù)一、數(shù)項級數(shù)二、冪級數(shù)討論斂散性求收斂范圍,將函數(shù)展開為冪級數(shù),求和。:給定一個數(shù)列??,,,,,321nuuuu將各項依,1???nnu即1nu????????nuuu321稱上式為無窮級數(shù),其中第n項nu叫做級數(shù)的一般項,級數(shù)
2025-02-19 18:02
【摘要】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁結(jié)束后頁含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39
【摘要】微分方程模型二、微分方程模型三、微分方程案例分析一、微分方程建模簡介四、微分方程的MATLAB求解五、微分方程綜合案例分析微分方程是研究變化規(guī)律的有力工具,在科技、工程、經(jīng)濟管理、生態(tài)、環(huán)境、人口和交通各個領(lǐng)域中有廣泛的應(yīng)用。不少實際問題當(dāng)我們采用微觀眼光觀察時都遵循著下面的模式:凈變化率=輸入率-輸出率(守恒原理)
2025-01-19 10:50
【摘要】微分方程例題選解1.求解微分方程。解:原方程化為,通解為由,,得,所求特解為。2.求解微分方程。解:令,,原方程化為,分離變量得,積分得,原方程的通解為。3.求解微分方程。解:此題為全微分方程。下面利用“湊微分”的方法求解。原方程化為,由,得,
2025-07-24 09:11