【摘要】圓心角第2課時圓心角定理的逆定理1.(4分)下列說法中正確的是()A.等弦所對的弧相等B.等弧所對的弦相等C.圓心角相等,所對的弦相等D.弦相等,所對的圓心角相等2.(4分)如圖所示,已知AB是⊙O的直徑,C,D是BE︵的三等分點,∠
2024-12-07 13:07
【摘要】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
2025-06-12 01:19
【摘要】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
【摘要】§圓心角和圓周角一、課題§圓心角和圓周角二、教學目標探索圓心角的性質(zhì)的過程三、教學重點和難點重點:經(jīng)歷探索圓心角性質(zhì)的過程.難點:圓心角性質(zhì)的應用.四、教學手段現(xiàn)代課堂教學手段]五、教學方法啟發(fā)式教學六、教學過程設(shè)計(一)、新授
2024-12-09 08:46
【摘要】·圓心角:我們把頂點在圓心的角叫做圓心角.OBA在⊙O中,∠AOB就是圓心角,弦AB是這個圓心角所對的弦,是它所對的弧AB如圖,將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A’OB’的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么?根據(jù)旋轉(zhuǎn)的性質(zhì),將圓心角∠AOB繞圓心O旋轉(zhuǎn)
2024-11-18 17:44
【摘要】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關(guān)系九年級數(shù)學(上)第四章:對圓的進一步認識圓的對稱性及特性?圓是軸對稱圖形,圓的對稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對稱軸.想一想2駛向勝利的彼岸?圓也是中心對稱圖形,它的對稱中心就是圓心.?用旋轉(zhuǎn)的方法可以得到
2024-11-19 09:35
2025-10-07 05:25
【摘要】圓周角和圓心角的關(guān)系(1)陳愛紅一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關(guān)系?B3、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形
2025-10-09 12:10
【摘要】弧、弦、圓心角1.若AB︵,CD︵是同一圓上的兩段弧,且AB︵=CD︵,則弦AB與弦CD之間的關(guān)系是(C)A.AB<CDB.AB>CDC.AB=CDD.不能確定【解析】同圓或等圓中等弧所對的弦相等.2.如圖24-1-27所示,AB是⊙O的直徑,C,D是BE︵
2024-12-03 05:51
2024-11-19 09:33
【摘要】回顧與思考如圖1,∠AOB是角。OAB如圖2,AB=CD,則∠AOB與∠COD的大小關(guān)系是:。BAOCD圓心相等用心想一想,馬到功成在射門游戲中,球員射中球門的難易與他所處的位置B對球門AC的張角(∠
2024-11-18 19:08
【摘要】課時課題:第三章圓3.圓周角和圓心角的關(guān)系第1課時課型:新授課教學目標:1.經(jīng)歷圓周角和圓心角的關(guān)系的探索、證明、應用的過程,養(yǎng)成自主探究、合作交流的學習習慣,體會分類、歸納等數(shù)學思想方法。2.理解圓周角的概念及圓周角和圓心角的關(guān)系。并能夠應用“圓周角與圓心角的關(guān)系”進行簡單的論證和計算.重點:經(jīng)歷探索“圓周角與圓心角的關(guān)系”的過程,理解“圓周角與圓心角
2025-06-09 23:11