【摘要】及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用
2024-11-12 18:09
【摘要】用不動(dòng)點(diǎn)法求遞推數(shù)列(a2+c2≠0)的通項(xiàng)儲(chǔ)炳南(安徽省岳西中學(xué)246600)1.通項(xiàng)的求法為了求出遞推數(shù)列的通項(xiàng),我們先給出如下兩個(gè)定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動(dòng)點(diǎn)方程,其根稱為函數(shù)的不動(dòng)點(diǎn).下面分兩種情況給出遞推數(shù)列通項(xiàng)的求解通法.(1)當(dāng)c=0,時(shí),由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【摘要】......求數(shù)列通項(xiàng)公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。 解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差
2025-03-25 02:53
【摘要】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級(jí):高一學(xué)科教師:課時(shí)數(shù):3授課類型等差數(shù)列與通項(xiàng)公式教學(xué)目的掌
2025-06-25 04:00
【摘要】專題:數(shù)列的通項(xiàng)求通項(xiàng)的常見問題:1、特殊數(shù)列的通項(xiàng)2、構(gòu)造特殊數(shù)列,間接求通項(xiàng)3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項(xiàng)公式。『回顧』
2024-11-09 13:17
【摘要】數(shù)列的通項(xiàng)公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項(xiàng)公式,便可以研究數(shù)列的性質(zhì)及前n項(xiàng)和等,所以求數(shù)列的通項(xiàng)公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項(xiàng)公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項(xiàng)公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2024-11-18 18:02
【摘要】等差數(shù)列通項(xiàng)公式教案一教學(xué)類型新知課二教學(xué)目標(biāo) ,使學(xué)生加深對(duì)等差數(shù)列通項(xiàng)公式的認(rèn)識(shí),能解決一些簡單的問題; 、項(xiàng)數(shù)、公差、首項(xiàng),使學(xué)生進(jìn)一步體會(huì)方程思想; 3.培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí).三教學(xué)重點(diǎn),難點(diǎn).2通項(xiàng)公式的理解與掌握;教學(xué)難點(diǎn)是掌握公式的推導(dǎo)過程以及對(duì)公式靈活運(yùn)用.四教學(xué)用具實(shí)物投影儀,多
2025-07-25 04:58
【摘要】求數(shù)列通項(xiàng)公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、利用例2.若和分別表示數(shù)列和的前項(xiàng)和,對(duì)任意正整數(shù),.求數(shù)列的
2025-08-23 06:16
【摘要】數(shù)列通項(xiàng)公式的求法集錦一、觀察法例1寫出數(shù)列的一個(gè)通項(xiàng)公式,使它的前5項(xiàng)分別是下列各數(shù)(1)3,5,9,17,33(2)-1/2,1/2,-3/8,1/4,-5/32(3)2,22,222,2222,22222注:在平時(shí)學(xué)習(xí)中要牢記常見的一些數(shù)列通項(xiàng)公式,如n,1/n,2n,2n+1,n!,,n(n+1)等,其他數(shù)列往往由這些基本數(shù)列和其他常數(shù)進(jìn)行四則運(yùn)
2025-04-02 01:08
【摘要】待定系數(shù)法求特殊數(shù)列的通項(xiàng)公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項(xiàng)公式,而這些問題在高考和競(jìng)賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學(xué)中,針對(duì)這類問題,提供一些特殊數(shù)列求通項(xiàng)公式范例,幫助同學(xué)們?nèi)嬲莆者@類問題及求解的一般方法。 求數(shù)列的通項(xiàng)公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個(gè)等差數(shù)列
2025-06-25 16:50
【摘要】....求數(shù)列通項(xiàng)公式的常用幾種方法數(shù)列知識(shí)是高考中的重要考察內(nèi)容,而數(shù)列的通項(xiàng)公式又是數(shù)列的核心內(nèi)容之一,它如同函數(shù)中的解析式一樣,有了解析式便可研究起性質(zhì)等;,求數(shù)列的通項(xiàng)公式往往是解題的突破口,,:1、類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,
2025-04-09 01:51
【摘要】