【正文】
the bustion in haze NOX carries on the government, is in the NOX regulatory measures the most important method, its craft may divide into the dry process and the aqueous method. dry Reduction Reduction in the reducing agent under the conditions of existence。 urea aqueous solution to absorb nitrogen oxides。目前對于大氣中氮氧化物污染的控制,主要分為氮氧化物產(chǎn)生的控制和氮氧化物的治理兩種途徑。該技術(shù)20世紀(jì)80年代初開始逐漸應(yīng)用于燃煤鍋爐的煙氣脫除NO X 。影響SNCR系統(tǒng)性能設(shè)計和運(yùn)行的主要因素是反應(yīng)溫度范圍、最佳溫度區(qū)的滯留時間、噴入的反應(yīng)劑與煙氣混合程度、處理前煙氣中NO X濃度、噴入的反應(yīng)劑與NO X的摩爾比、氨的逃逸量。利用碳質(zhì)固體還原NO X 是基于下列反應(yīng):C + 2NO→CO 2 +N2C +NO→CO + 1 /2N 2C +NO2 →CO 2 + 1 /2N2C + 1 /2NO2 →CO + 1 /4N 2國外對碳層熱還原NO X 進(jìn)行了大量研究。其優(yōu)點(diǎn)是不產(chǎn)生廢水,回收副產(chǎn)物NH 4NO3 可作氮肥加以利用,能同時脫除SO 2 和NO X ,且具有較高的脫除率。但動力學(xué)研究表明,O 2 與碳的反應(yīng)先于NO與碳的反應(yīng),故尾氣中O2 的存在使碳耗量增大。該工藝不需催化劑,舊設(shè)備改造量小,但氨液消耗量較SCR法多,目前國內(nèi)基本不用此法。但是SCR技術(shù)也還存在一些不足,如對管路設(shè)備的要求高,造價昂貴、NH 3 加入量的控制容易出現(xiàn)誤差,造成二次污染。爐膛噴射包括爐膛噴水或注入水蒸氣、噴射二次燃料、噴氨等方法。s national conditions, especially in the economic capacity, the selection of control technology should be in line with local conditions, make full use of local resources, to achieve economically viable and technically mature and reliable operation. With the NOX emissions charges, as well as a number of flue gas gentrification technology matures, China39。 residence time in the ~ 10 s range, but in order to obtain better The NOX removal rate, the requirements for the minimum retention time of s, the molar ratio is generally ~ 3. This craft does not need the catalyst, the old equipment transforms the quantity to be small, but the ammonia cal liquor consumption pares the SCR law to be many, at present domestic basic does not use this law. (3) The hot carbon reduction Groups the use of carbon reduction of NOX emissions are nonselective noncatalytic reduction. With fuel gas for the reducing agent of nonselective catalytic reduction method, the advantage of no need for expensive platinum, palladium precious metal catalyst, a catalyst to avoid the problems caused by poisoning。 在實(shí)驗及論文過程中也學(xué)到了做任何事情所要有的態(tài)度和心態(tài),首先做學(xué)問要一絲不茍,對于發(fā)展過程中出現(xiàn)的任何問題和偏差都不要輕視,要通過正確的途徑去解決,在做事情的過程中要有耐心和毅力,不要一遇到困難就打退堂鼓,只要堅持下去就可以找到思路去解決問題的。謝 辭感謝蘇老師指引我們的實(shí)驗及論文的方向和架構(gòu),并對本論文初稿進(jìn)行逐字批閱,指正出其中謬誤之處,使我們有了思考的方向。 在二氧化氮的測定時應(yīng)避免二氧化硫和過氧乙酰酯 PAN(光化學(xué)成分)的干擾,以免造成測定誤差。其換算式如下:V0=Vt(273/273+t)(P/) (公式 22)式中 V0——標(biāo)準(zhǔn)狀態(tài)下的采樣體積,L 或 m3; Vt——現(xiàn)場狀態(tài)下的采樣體積,L 或 m3; t——采樣時的溫度,℃; P——采樣時的大氣壓力, KPa。 樣品的測定采樣后,放置 20min(氣溫低時應(yīng)適當(dāng)延長顯色時間。以吸光度為縱坐標(biāo),相應(yīng)的標(biāo)準(zhǔn)溶液中 NO2含量 μg 為橫坐標(biāo),繪制標(biāo)準(zhǔn)曲線。此為吸收原液,存入棕色瓶中。 儀器 多孔玻板吸收瓶:10mL。因此我們應(yīng)時刻注意氮氧化物中二氧化氮的變化,并對其進(jìn)行檢測和分析。酸雨會對環(huán)境帶來廣泛的危害,造成巨大的經(jīng)濟(jì)損失,如:腐蝕建筑物和工業(yè)設(shè)備;破壞土壤成分,使農(nóng)作物減產(chǎn)甚至死亡;飲用酸化物造成的地下水,對人體有害等。就全球來看,大氣中的二氧化氮一部分來源于雷電、含氮有機(jī)物的分解、火山爆發(fā)、森林火災(zāi)等天然源;另一部分來源于燃料燃燒等人為源。氮氧化物排放量的劇增使我國城市大氣中的 NO2 污染程度加重,使 NO2對大氣的污染已成為一個不容忽視的問題。此次主要是通過研究大氣中的二氧化氮來確定氮氧化物的含量。由于火花塞點(diǎn)火時使用高壓電點(diǎn)火,在高壓電的作用下,氮?dú)馀c氧氣生成一氧化氮(NO) ,一氧化氮不穩(wěn)定,與氧氣進(jìn)一步反應(yīng)生成二氧化氮(NO 2) 。(4)引起溫室效應(yīng):氮氧化物的釋放過程中存在著硝化和反硝化作用,此過程中二氧化氮放出,對溫室效應(yīng)有強(qiáng)大的貢獻(xiàn)力:1 分子二氧化氮的溫室效應(yīng)增溫潛力為 1 分子二氧化碳的 300 倍。第 1 章 大氣中二氧化氮測定的原理 原理空氣中的二氧化氮被吸收液吸收后,生成亞硝酸和硝酸。2HCI]于 50ml 容量瓶中,用水溶解稀釋至刻度。此溶液每毫升含 亞硝酸根(NO 2).第 2 章 校園中二氧化氮的測定 標(biāo)準(zhǔn)曲線的繪制取 6 支 10ml 具塞比色管,按(表 21)數(shù)據(jù)配制標(biāo)準(zhǔn)系列。以~,避光采樣至吸收液呈微紅色為止,記下采樣時間,密封好采樣管,帶回實(shí)驗室,當(dāng)日測定。式中 y——二氧化氮的吸光度;采樣體積的計算: Vt= Q t (公式 21)式中 Q——采樣時的流量,L /m 3; T——采樣時間,min。若無顆粒狀亞硝酸鈉試劑,可用高錳酸鉀容量法標(biāo)定出亞硝酸鈉貯備溶液的準(zhǔn)確濃度后,在稀釋成每毫升含 亞硝酸根的標(biāo)準(zhǔn)溶液。二氧化氮對環(huán)境和人體具有非常嚴(yán)重的損害。 感謝所有給我們幫助的老師和同學(xué),謝謝你們! 通過此次的實(shí)驗及論文,我們學(xué)到了很多知識,跨越了傳統(tǒng)方式下的教與學(xué)的體制束縛,在論文的寫作過程中,通過查資料和搜集有關(guān)的文獻(xiàn),培養(yǎng)了自學(xué)能力和動手能力。 will be reduced NOX harmless N2 nontoxic in order to eliminate nitrogen oxides pollution in a treatment. Commonly used at home and abroad to restore the law are: (1) Selective Catalytic Reduction (SCR) Selective catalytic reduction (selective catalytic reduction, SCR) is the presence of solid catalysts, using a variety of reducing gases such as H2, CO, hydrocarbons, NH3 and NOX into the response to N2. The technology in the early 20th century, began to 80 applies to coalfired boiler flue gas removal of NOX. SCR technology, the key question is the choice of catalyst. In automobile exhaust catalytic reaction, the general use of CO as a reducing agent, PtRh or Pd as a catalyst type, the general distribution of catalyst in the overall surface of ceramic coating. Zhao Qiong Liu and other study found that in 350 ℃, there is the presence of SO2, CO in catalyst reduction of NO conversion rate of close to 100% and made SO2 + NO + CO reaction mechanism of oxidationreduction reaction. SCR technology but there are also a number of shortings, such as pipeline equipment requirements, cost, NH3 control the amount of error prone, resulting in secondary pollution。 etc., and make it back to N2. Ammonium Sulfite reduction has a strong ability of NOX can be reduced to harmless nitrogen gas, and the suboxidation of ammonium sulfate were Ammonium can be used for fertilizer use. To form nitrite and urea nitrogen, CO2 and water, it is the same as subammonium sulfate method, urea as a reducing agent for reduction of NO2, the reaction is:NH2CONH2 + 2HNO2 →2N 2 ↑ +CO 2 ↑ + 3H 2O(4) Complex absorption Completing agent to absorb the direct use of liquidphase reaction with NO, it is mainly to deal with the NOX exhaust containing NO have particular significance. With solutions and so on ferrous sulfate, sodium sulfite, ethylene diamante four ethnic acids absorbs, production plex pound. NOX plex in the heat generated when the rerelease NO, thereby enabling recovery of NO can be enriched. The current study are the NO plex absorbent FeSO4, Fe (Ⅱ)EDTA and Fe(Ⅱ)EDTANa 2SO4 such. Studies have shown that cobalt salts and ethylenediamine solution available to absorb nitrogen oxides than Fe (Ⅱ)EDTA better results, ethylenediamine cobalt can be achieved in the same reaction in the oxidation of nitrogen oxides, and absorption. NOX current wet treatment technology, the improvement of major research absorbent, Li Peng, who introduced a new type