【正文】
for volcano logical observations from orbit. J Volcanol Geotherm Res 135:13 –28Robson S, Shortis MR, Ray SF (1999) Vision metrology with super wide angle and fisheye optics. In: Videometrics VI. SPIE Volume 3641, SPIE, San Jose, pp 199–206Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7993–8008Stevens NF, Garbeil H, MouginisMark PJ (2004) NASA EOS Terra ASTER: volcanic topographic mapping and Sens Environ 90:405–414Bulletin of Volcanology ,July 2009,相機(jī)的相對(duì)方位知識(shí)(相對(duì)于成像面)對(duì)研究觀(guān)測(cè)角度及明顯溫度的解決方案的影像有著至關(guān)重要的作用。圖3正射熱圖像。 C的溫度給予飽和值。一些曲解是很明顯的在正北方向的成像通道的最高區(qū)域,表面模型邊緣問(wèn)題的矯正誤差由于傾斜視角變得更加復(fù)雜。為了避免因混合像元效應(yīng)(羅里等人,1988)的復(fù)雜性,在后續(xù)分析之前,溫度值轉(zhuǎn)換為發(fā)射功率(出射度,)。表面的任何部分的昏暗情況是通過(guò)三角形的深度規(guī)律并考慮最鄰近的“可見(jiàn)”三角形逐像素的觀(guān)察處理的。攝影測(cè)量和結(jié)果 攝影測(cè)量軟件的使用(VMS系統(tǒng),Robson and Shortis,)提供了一般實(shí)例的解決方案,適合有重疊的傾斜圖像帶的使用。由金屬箔構(gòu)建的人工控制目標(biāo)被部署在該區(qū)域。同時(shí)有相當(dāng)一部分發(fā)展在陡峭的地形流場(chǎng)有落石的危險(xiǎn),流動(dòng)前端相對(duì)可行。20042005年熔巖最終流域顯示為主圖上的黑色區(qū)域以及它們?cè)?004年9月27號(hào)的流域顯示在插圖上。不過(guò),關(guān)鍵的缺點(diǎn),存在于大多數(shù)近距離數(shù)據(jù)集(強(qiáng)烈的斜視角,未知的成像幾何關(guān)系與傳感器的空間位置)通常阻礙地理參考和目前制約定量分析。衛(wèi)星數(shù)據(jù)經(jīng)常用于監(jiān)測(cè)活火山,但為獲取準(zhǔn)確的溫度信息,可行的空間分辨率為30 m左右的中紅外或近紅外區(qū)域(陸地衛(wèi)星TM和ASTER數(shù)據(jù))或更大的熱紅外波段(60m的陸地衛(wèi)星ETM +和ASTER的90米。然而,他們往往由顯著的相機(jī)到對(duì)象的深度的變化和閉塞的斜視組成,復(fù)雜化定量分析。3%,其是假設(shè)在一個(gè)統(tǒng)一的平均圖像的觀(guān)看距離計(jì)算而得。因此,手持式熱成像儀獲取的圖像有潛力提供了豐富的(熔巖)流動(dòng)模型信息,并提供地面實(shí)況39。觀(guān)察對(duì)象的表面和相機(jī)方位的測(cè)定允許對(duì)熱圖像的每個(gè)像素的有關(guān)大氣衰減因素計(jì)算。在相對(duì)溫和的流動(dòng)速率(大約3立方米每秒。該熱感相機(jī)的幾何成像校準(zhǔn)是很有必要的,因此擁有熱感標(biāo)記的目標(biāo)是必需的。對(duì)于規(guī)模,活躍流通的前面大約35米寬。 攝影測(cè)量數(shù)據(jù)后處理是利用Matlab進(jìn)行的。對(duì)每個(gè)像素的衰減程度與大氣的相對(duì)濕度與大氣的相對(duì)路徑長(zhǎng)度有關(guān)。一個(gè)例子如圖3。C黑色體溫)。這一區(qū)域在流動(dòng)前端的后面,(在視線(xiàn)距離約110m到200m,圖3)展示了最低出射度值約為350 (或約為80176。這里提出的數(shù)據(jù)證明了成像的熔巖流近景攝影測(cè)量技術(shù)的潛力。4. 正射影像和具有地理參照的熱感圖像為熔巖流的發(fā)展(如渠道移徙,從渠道向管狀地形的轉(zhuǎn)變,制約前進(jìn)流速方面的影響)并與其他數(shù)據(jù)集的結(jié)合。 Donegan and Flynn 2004。3% (increased exitance for distant objects and decreased exitance for closer objects) with respect to the ‘globally’ corrected image (for a measured relative humidity of 75%).The bination of a known surface, camera orientation and sensor imaging geometry allows orthorectification of the thermal images and hence geo referencing of the data. An example is shown in Fig. 3. Note that, for this image, some important regions of the flow are occluded by the irregular topography of flow areas closer to the camera. This could be avoided by using less oblique images (. data acquired from a helicopter) or by bining images from different terrestrial positions. Some distortion is evident in the uppermost area of the imaged channel (to the north), where rectification errors from problems at the edge of the surface model are pounded by the oblique viewing angle.Although these issues will be addressed in future work, flow features can be easily identified in the current rectified data. For example, using the parallel lineations of elevated exitance to delineate the active regions of the channel (as opposed to the levees), at a viewing range of ~310 m, the western channel branch has a width of m, which narrows to ~9 m as the flow passes over a region of steeper gradient at a range of ~260 m (Fig. 3). This pares with an average channel width of 17 m and maxima and minima of 37 and 2 m respectively, determined from laser altimeter data collected earlier in the eruption (Mazzarini et ). For this channel section, the exitance measured from the central region of the flow is ~700–1,700 W m?2(corresponding to a black body temperature of 200–290176。C and relative humidity, 75%).Axes scales are meters with respect to the camera position. Areas of surface which are occluded for this camera orientation plot in black. Their angular nature is a result of defining their extent using the triangulation of the surface model.Summary1. Multiphoto closerange photogrammetric techniques have been successfully applied to visible and thermal images of lava flows collected using groundbased Cameras.2. The visible images have been used to generate topographic data and to assist registration of the thermal imagery.3. The bination of known imaging geometry and topographic data allows observation distances to be calculated and hence relevant atmospheric attenuation corrections to be applied to each pixel in the thermal images.4. Photogrammetric orthorectification and geo referencing of the thermal images provides quantitative results for further analysis of lavaflow development (. Channel migration, transition from channel to tube morphology, the effect of flow fronts constraining advance rates)and for bination with other image datasets.Acknowledgements This work was supported by the Royal Society. We thank S. Calvari, J. Dehn, D. Rothery and an anonymous reviewer for thorough reviews which have improved the text.ReferencesBaldi P, Bonvalot S, Briole P, Marsella M (2000) Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy. Geophys J Int 142:801–811Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: a moderate resolution model for LOWTRAN 7. Hans Air Force Base, MA: Air Force Geophysics Laboratory, Bedford, MA, p 38Burton MR, Neri M, Andronico D, Branca S, Caltabiano T, Calvari S, Corsaro RA, Del Carlo P, Lanzafame G, Lodato L, Miraglia L, Salerno G, Spampinato L (2005) Etna 2004–2005: an archetype for geodynamicallycontrolled effusive Res Lett 32:L09303. DOI Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Bruton MR, Andronico D (2005) Chronology and plex volcanic processes durin