【正文】
Compensation of SVPWM Based on DSP TMS320F2812 for PMSMSong Xuelei*, Wen Xuhui, Guo Xinhua, and Zhao FengInstitute of Electrical Engineering, Chinese Academy of Sciences, Beijing, Email: songxlAbstract—The deadtime effect in a threephase voltage source inverter can result in voltage losses, current waveform distortion and torque pulsation. In order to improve the current waveform and decrease the torque pulsation, this paper proposes a deadtime pensation method of SVPWM. This method divides the iα iβ plane into six sectors and pensates the deadtime of SVPWM according to the sector number of stator current vector determined by the α and βaxis ponents of the stator current vector in the twophase static reference frame. In addition, this method can be implemented entirely through software without any extra hardware. Finally experiments based on DSP TMS320F2812 are established and made, and the experiment results indicate that the proposed method is correct and feasible.Index Termsdeadtime pensation,SVPWM,PMSM,TMS320F2812I. INTRODUCTIONBecause the permanent magnet synchronous machine (PMSM) has a lot of advantages such as high power density, high efficiency, high torque to inertia ratio, high reliability, et al[1],therefore, the PMSM driving system have been widely used in many application fields, especially in hybrid electric vehicles (HEV) in recentyears[2][6]. In the PMSM driving system, the threephase voltage source inverter is usually adopted and the IGBT and MOSFET are also used because of their fast switchingfrequency. For the threephase voltage source inverter, in order to avoid the short circuit of the dc link occurring when the two switch devices of the same phase are turned on simultaneously, the deadtime is usually inserted in the gate driving switch signals. During the duration of the deadtime, both of the two switch device of the same phase are turned off. The existing of the deadtime will lead to a series of deadtime effect problems such as voltage losses, current waveform distortion and torque pulsation, especially under the condition of small current or low speed.SVPWM (Space Vector Pulse Width Modulation) is a popular modulation method for threephase voltage source inverter in motor driving system. In order to improve the current waveform of motors and decrease the torque pulsation of motors, several deadtime pensation methods of SVPWM have been researched and used in the motor driving system[7][11]. Most of the pensation methods are based on the theory of average voltage deviation. In this paper, a novel deadtime pensation method of SVPWM, which is also based on the theory of average voltage deviation, is proposed. This method divides the iα iβ plane into six sectors and pensates the deadtime of SVPWM according to the stator current vector angle φ determined by the α and β axis ponents of the stator current vector in the α β reference frame. In addition, this method can be implemented entirely through software without any extra hardware design. Finally experiments are made on the PMSM driving platform based on DSP TMS320F2812 to test and verify the proposed pensation method.II. DEADTIME COMPENSATION METHOD shows the topology diagram of the PMSM driving system whose invert unit adopts the threephase voltage source inverter. In , Q1, Q2, Q3, Q4, Q5 and Q6 are six IGBTs of the threephase voltage source inverter, and D1, D2, D3, D4, D5 and D6 are their reverse parallel diodes respectively. In addition, the driving switch signals g1, g2, g3, g4, g5 and g6 are provided by the control unit of the driving system.Define the phase currents ia, ib and ic are positive when they flow from the inverter to PMSM, and negative when they flow from PMSM to the inverter. There are eight switch bination states for the six IGBTs in the threephase voltage source inverter, and during the duration of deadtime, there are correspondingly six current bination states for threephase currents ia, ib and ic according to their polarity:(1) ia0, ib0 and ic0。(3) ia0, ib0 and ic0。使我對科學研究的過程和方法,有了一個深刻的體會和了解。圖73單相繞組聯(lián)結(jié)圖圖74 三相繞組聯(lián)結(jié)圖參考文獻[1]. 陳世坤 電機設計[M] 北京:機械工業(yè)出版社 2000[2]. 李發(fā)海 朱東起 電機學[M] 北京:科學出版社 2001[3]. 韓俊良 風力發(fā)電設備的技術(shù)特點及發(fā)展前景[J] 大連起重集團有限公司設計一院2004[4]. 孫國偉 程小華 變速恒頻雙饋風力發(fā)電系統(tǒng)及其發(fā)展趨勢[J] 華南理工大 學電力學院 2004.[5]. 中小電機行業(yè)發(fā)展趨勢[J] 中國電器工業(yè)協(xié)會行業(yè)發(fā)展部 [6]. 吳旭升 孫俊忠 未來電機的發(fā)展與展望[J] 船電技術(shù) [7]. 辜成林 陳喬夫 熊永前 電機學[M] 華中科技大學出版社 2001[8]. 李隆年 王寶玲 電機設計[M] 清華大學出版社 1992[9]. 中小型電機設計手冊[M] 機械工業(yè)出版社 上海電器科學研究所[10]. 電機設計資料匯編[M] 南昌大學電氣自動化系電機教研室 2004[11]. 孟大偉 孔祥春 AutoCAD在電機設計中的應用[J] 哈爾濱電工學院學報 1991 ,No3 [12]. 中小型三相異步電動機電磁設計手算程序 [M] 南昌大學電氣自動化系電機教研室.[13]. 彭友元 電機繞組手冊[M] 遼寧科學技術(shù)出版社[14]. 陳世坤編 電機設計[M] 機械工業(yè)出版社[15]. 李發(fā)海等合編 電機學[M] 科學出版社[16]. 辜承林 陳橋夫 熊永前 電機學[M] 華中科技大學出版社[17]. 張躍峰等編 AUTO CAD 2004入門與提高[M] 清華大學出版社[18]. 徐剛 最新國內(nèi)外電機設計制造新工藝新技術(shù)與檢修及質(zhì)量檢測技術(shù)標準應用手冊(上)[M] 銀聲音像出版社[19]. 張培星 變頻器方案[M] 北京北洋電子技術(shù)有限公司[20]. 彭兵 相變頻調(diào)速同步電動機設計[D] 沈陽工業(yè)大學[21]. 陳伯時 電力拖動自動控制系統(tǒng)[M] 機械工業(yè)出版社[22]. 戴文進 徐龍權(quán) 電機學[M] 清華大學出版社總結(jié)本文為75kw4極變頻調(diào)速同步電動機及其控制系統(tǒng)的設計,電機設計是復雜的過程,需要考慮的因素和確定的尺寸、數(shù)據(jù)很多,這就難免遇到復雜的矛盾。允許用戶進行二次開發(fā):Auto CAD自帶的Auto LISP語言讓用戶自行定義新命令和開發(fā)新功能。作為以CAD技術(shù)為內(nèi)核的輔助設計軟件,Auto CAD具備了CAD技術(shù)能夠?qū)崿F(xiàn)的基本功能。轉(zhuǎn)速調(diào)節(jié)器ASR的輸出時轉(zhuǎn)矩給定信號,除以磁通模擬信號即得定子電流轉(zhuǎn)矩分量的給定信號,是磁通給定信號經(jīng)磁通滯后模型模擬其滯后效應后得到的。同步電動機磁動勢與磁通的空間矢量圖如圖63所示。現(xiàn)忽略次要因素,做出如下假設:假設是隱極電機,或者忽略凸極的磁阻變化。(1)基頻以下調(diào)速由上式可知,要保持不變,當頻率從額定值向下調(diào)節(jié)時,必須同時降低,使得/=常值,即采用電動勢頻率比為恒值的控制方式。因為,當每槽導體數(shù)增加為12時,這是不允許的,當然,還是比較幸運的。當然做出這樣的改動會影響同步電動機其他的性能指標,這將在后面做下一步比較。檢查發(fā)現(xiàn)了很多問題并加以糾正,如公式的錯誤,角標的錯誤等等。(3)槽滿率對電機性能的影響槽滿率指的是導線有規(guī)則的排列所占的面積與槽的有效面積之比,即:。(1)同步電動機主要尺寸確定在同步電動機設計之初,首先要進行主要尺寸的選擇,這影響到同步電動機很多重要的性能。得一相繞組地合成電動勢 ,或稱氣隙電動勢。因此直軸磁阻比交軸磁阻小。(3)相互作用定義:磁極間同性相斥、異性相吸的電磁力。原因:旋轉(zhuǎn)磁場切割繞組。同步電動機的定子繞組稱為電樞繞組,因此,上述磁勢又稱電樞磁勢,相應的磁場稱電樞磁場。此外,電機銘牌還常列出額定勵磁電壓,額定勵磁電流, 額定溫升等參數(shù)。冷卻方式同步電動機常用冷卻方式有自冷式、自扇冷式、他扇冷式、管道通風式和外裝冷卻器等。在發(fā)電機方面,同步電機擁有最廣泛的應用,在現(xiàn)代電力系統(tǒng)中,幾乎所有的交流電都是由同步電機產(chǎn)生的。凸極式轉(zhuǎn)子結(jié)構(gòu)簡單,磁極形狀與直流機較相似,磁極上裝有集中式直流勵磁繞阻。端蓋的作用與異步電機基本相同,用于將電機本體的兩端封蓋起來,且與機座、定子鐵心和轉(zhuǎn)子一起構(gòu)成電機內(nèi)部完整的通風系統(tǒng)。同步電機的基本結(jié)構(gòu):和直流電