【摘要】課時作業(yè)(十三)一、選擇題1.已知點P(6,y)在拋物線y2=2px(p0)上,若點P到拋物線焦點F的距離等于8,則焦點F到拋物線準線的距離等于( )A.2B.1C.4D.8【解析】 拋物線y2=2px(p0)的準線為x=-,因為P(6,y)為拋物線上的點,所以點P到焦點F的距離等于它到準線的距離,所以6+=8,所以p=4,即焦點F到拋物線的距離
2025-03-25 02:27
【摘要】拋物線及其標準方程制作:張華復習:橢圓、雙曲線的第二定義:與一個定點的距離和一條定直線的距離的比是常數(shù)e的點的軌跡,當0<e<1時,是橢圓,·MFl0<e<1lF·Me>1·FMl·
2024-11-17 19:47
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第七節(jié)拋物線菜單課后
2025-07-23 17:26
【摘要】的簡單幾何性質(zhì)(3)復習練習:1、已知拋物線,若的三個頂點都在該拋物線上,且點A的縱坐標為8,的重心恰在拋物線的焦點上,求直線BC的斜率。232yx?ABC?ABC?(4)求證:以拋物線的過焦點的弦為直徑
2024-11-18 11:25
【摘要】問題情景1、下面圖片中有我們學過的圓錐曲線嗎?趙州橋探照燈2、你能否再舉一些生活中拋物線的例子?拋物線的標準方程一、拋物線的定義:平面內(nèi)與一個定點F和一條定直線l(F不在l上)的距離相等的點的軌跡叫做拋物線即:當=1時點M的軌跡是拋物線|MF||MN|其中定點
2024-11-12 17:11
【摘要】拋物線焦點弦性質(zhì)總結(jié)30條基礎回顧1.以AB為直徑的圓與準線相切;2.;3.;4.;5.;6.;7.;8.A、O、三點共線;9.B、O、三點共線;10.;11.(定值);12.;;13.垂直平分;14.垂直平分;15.;16.;17.;18.;19.;20.;
2025-06-25 07:09
【摘要】....拋物線及其性質(zhì)1.拋物線定義:平面內(nèi)到一定點F和一條定直線的距離相等的點的軌跡稱為拋物線.2.拋物線四種標準方程的幾何性質(zhì):圖形參數(shù)p幾何意義參數(shù)p表示焦點到準線的距離,p越大,開口越闊.開口方向右左上下標準方程
2025-06-24 21:19
【摘要】拋物線及其性質(zhì)1.拋物線定義:平面內(nèi)到一定點F和一條定直線的距離相等的點的軌跡稱為拋物線.
【摘要】直線與拋物線的位置關系復習X復習回顧直線與圓、橢圓、雙曲線的位置關系直線與圓、橢圓、雙曲線的位置關系的判斷方法:1、對于封閉圖形(圓、橢圓),可根據(jù)幾何圖形直接判斷2、直線與圓錐曲線的公共點的個數(shù)Ax+By+c=0f(x,y)=0(圓錐曲線方程)解的個數(shù)幾何法
2025-08-05 09:50
【摘要】掌握拋物線的定義、標準方程、幾何圖形及簡單性質(zhì).第8課時拋物線?1.高考對拋物線的考查時常出現(xiàn),主要以拋物線定義的靈活運用、求拋物?線的標準方程、拋物線的幾何性質(zhì)及直線與拋物線的位置關系為主.?2.題目類型有求拋物線的方程,求焦點的坐標,求拋物線的參數(shù)值或有關?參數(shù)的取值范圍等,對拋
2024-09-29 00:45
【摘要】課題:利用“特征梯形”探究拋物線的性質(zhì)拋物線的定義:Pl0xyF(x1,y1)(x2,y2)xyB′A′探究一:弦長問題探究二:角度(圓與直線位置關系)問題xyB′A′xy
2024-11-06 13:54
【摘要】第二章二次函數(shù)結(jié)識拋物線主講:蘇書芹?你想直觀地了解它的性質(zhì)嗎?數(shù)形結(jié)合,直觀感受?在二次函數(shù)y=x2中,y隨x的變化而變化的規(guī)律是什么?有的放矢?觀察y=x2的表達式,選擇適當x值,并計算相應的y值,完成下表:?你會用描點法畫二次函數(shù)y=x2的圖象嗎?x
2024-11-24 17:27