freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)超全(完整版)

  

【正文】 實(shí)際的比例結(jié)構(gòu)。第三章 概 率 —基本概念:(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。(3)常數(shù)代換:在三角函數(shù)運(yùn)算,求值,證明中,有時(shí)需要將常數(shù)轉(zhuǎn)化為三角函數(shù)值,例如常數(shù)“1”的代換變形有: (4)冪的變換:降冪是三角變換時(shí)常用方法,對(duì)次數(shù)較高的三角函數(shù)式,一般采用降冪處理的方法。(2) 通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來表示,這個(gè)公式即是該數(shù)列的通項(xiàng)公式。 在字母比較的選擇或填空題中,常采用特值法驗(yàn)證。第四部分 復(fù)數(shù)1.概念:(1) z=a+bi∈Rb=0 (a,b∈R)z= z2≥0;(2) z=a+bi是虛數(shù)b≠0(a,b∈R);(3) z=a+bi是純虛數(shù)a=0且b≠0(a,b∈R)z+=0(z≠0)z20;(4) a+bi=c+dia=c且c=d(a,b,c,d∈R);2.復(fù)數(shù)的代數(shù)形式及其運(yùn)算:設(shè)z1= a + bi , z2 = c + di (a,b,c,d∈R),則:(1) z 1177。2.相關(guān)系數(shù)(判定兩個(gè)變量線性相關(guān)性):注:⑴0時(shí),變量正相關(guān); 0時(shí),變量負(fù)相關(guān);⑵① 越接近于1,兩個(gè)變量的線性相關(guān)性越強(qiáng);② 接近于0時(shí),兩個(gè)變量之間幾乎不存在線性相關(guān)關(guān)系。注:類比推理是特殊到特殊的推理。2.間接證明反證法一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫反證法。注:演繹推理是由一般到特殊的推理。注:①得知越大,說明殘差平方和越小,則模型擬合效果越好;②越接近于1,則回歸效果越好。 (c + d)i;(2) = (a+bi)線性規(guī)劃問題:1.了解線性約束條件、目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解2.線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題.3.解線性規(guī)劃實(shí)際問題的步驟:(1)將數(shù)據(jù)列成表格;(2)列出約束條件與目標(biāo)函數(shù);(3)根據(jù)求最值方法:①畫:畫可行域;②移:移與目標(biāo)函數(shù)一致的平行直線;③求:求最值點(diǎn)坐標(biāo);④答;求最值; (4)驗(yàn)證。(3) 遞推公式:已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與他的前一項(xiàng)an1(或前幾項(xiàng))可以用一個(gè)公式來表示,這個(gè)公式即是該數(shù)列的遞推公式。降冪并非絕對(duì),有時(shí)需要升冪,如對(duì)無理式常用升冪化為有理式,常用升冪公式有: ; ;(5)公式變形:三角公式是變換的依據(jù),應(yīng)熟練掌握三角公式的順用,逆用及變形應(yīng)用。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。在隨機(jī)抽樣中,這種偏差是不可避免的。2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對(duì)比幾次樣本的特點(diǎn)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法??墒褂脭?shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語(yǔ)句后,接著執(zhí)行WEND之后的語(yǔ)句。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語(yǔ)句1;若條件不符合,則執(zhí)行ELSE后面的語(yǔ)句2。如:2=X是錯(cuò)誤的。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。條件P是否成立而選擇執(zhí)行A框或B框。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα⑴當(dāng)直線l與x軸平行或重合時(shí), α=0176。二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形A 梭 l βB   α二面角的記法:二面角αlβ或αABβ兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。 — 、平面與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。公理4作用:判斷空間兩條直線平行的依據(jù)。α(2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。高中數(shù)學(xué) 必修1知識(shí)點(diǎn)第一章 集合與函數(shù)概念【】集合的含義與表示 (1)集合的概念 集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系對(duì)象與集合的關(guān)系是,或者,兩者必居其一.(4)集合的表示法 ①自然語(yǔ)言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.(5)集合的分類①含有有限個(gè)元素的集合叫做有限集.②含有無限個(gè)元素的集合叫做無限集.③不含有任何元素的集合叫做空集().【】集合間的基本關(guān)系(6)子集、真子集、集合相等名稱記號(hào)意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個(gè)元素,則它有個(gè)子集,它有個(gè)真子集,它有個(gè)非空子集,它有非空真子集.【】集合的基本運(yùn)算(8)交集、并集、補(bǔ)集名稱記號(hào)意義性質(zhì)示意圖交集且(1)(2)(3) 并集或(1)(2)(3) 補(bǔ)集1 2 【補(bǔ)充知識(shí)】含絕對(duì)值的不等式與一元二次不等式的解法(1)含絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來求解(2)一元二次不等式的解法判別式二次函數(shù)的圖象一元二次方程的根(其中無實(shí)根的解集或的解集〖〗函數(shù)及其表示【】函數(shù)的概念(1)函數(shù)的概念①設(shè)、是兩個(gè)非空的數(shù)集,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)數(shù),在集合中都有唯一確定的數(shù)和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的一個(gè)函數(shù),記作.②函數(shù)的三要素:定義域、值域和對(duì)應(yīng)法則.③只有定義域相同,且對(duì)應(yīng)法則也相同的兩個(gè)函數(shù)才是同一函數(shù).(2)區(qū)間的概念及表示法①設(shè)是兩個(gè)實(shí)數(shù),且,滿足的實(shí)數(shù)的集合叫做閉區(qū)間,記做;滿足的實(shí)數(shù)的集合叫做開區(qū)間,記做;滿足,或的實(shí)數(shù)的集合叫做半開半閉區(qū)間,分別記做,;滿足的實(shí)數(shù)的集合分別記做.注意:對(duì)于集合與區(qū)間,前者可以大于或等于,而后者必須.(3)求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù).②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù).③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合.④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1.⑤中,.⑥零(負(fù))指數(shù)冪的底數(shù)不能為零.⑦若是由有限個(gè)基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時(shí),則其定義域一般是各基本初等函數(shù)的定義域的交集.⑧對(duì)于求復(fù)合函數(shù)定義域問題,一般步驟是:若已知的定義域?yàn)?,其?fù)合函數(shù)的定義域應(yīng)由不等式解出.⑨對(duì)于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對(duì)字母參數(shù)進(jìn)行分類討論.⑩由實(shí)際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實(shí)際意義.(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最?。ù螅?shù),這個(gè)數(shù)就是函數(shù)的最?。ù螅┲担虼饲蠛瘮?shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法: ①觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過觀察直接得到值域或最值.②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.③判別式法:若函數(shù)可以化成一個(gè)系數(shù)含有的關(guān)于的二次方程,則在時(shí),由于為實(shí)數(shù),故必須有,從而確定函數(shù)的值域或最值.④不等式法:利用基本不等式確定函數(shù)的值域或最值.⑤換元法:通過變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值.⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值.⑧函數(shù)的單調(diào)性法.【】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種. 解析法:就是用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.列表法:就是列出表格來表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.圖象法:就是用圖象表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.(6)映射的概念①設(shè)、是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)元素,在集合中都有唯一的元素和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的映射,記作.②給定一個(gè)集合到集合的映射,且.如果元素和元素對(duì)應(yīng),那么我們把元素叫做元素的象,元素叫做元素的原象.〖〗函數(shù)的基本性質(zhì)【】單調(diào)性與最大(?。┲担?)函數(shù)的單調(diào)性①定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值xx2,當(dāng)x1 x2時(shí),都有f(x1)f(x2),那么就說f(x)在這個(gè)區(qū)間上是增函數(shù).(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖 象上升為增)(4)利用復(fù)合函數(shù)如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值xx2,當(dāng)x1 x2時(shí),都有f(x1)f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖象下降為減)(4)利用復(fù)合函數(shù)②在公共定義域內(nèi),兩個(gè)增函數(shù)的和是增函數(shù),兩個(gè)減函數(shù)的和是減函數(shù),增函數(shù)減去一個(gè)減函數(shù)為增函數(shù),減函數(shù)減去一個(gè)增函數(shù)為減函數(shù).yxo③對(duì)于復(fù)合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減.(2)打“√”函數(shù)的圖象與性質(zhì)分別在、上為增函數(shù),分別在、上為減函數(shù).(3)最大(小)值定義 ①一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿足:(1)對(duì)于任意的,都有; (2)存在,使得.那么,我們稱是函數(shù) 的最大值,記作.②一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿足:(1)對(duì)于任意的,都有;(2)存在,使得.那么,我們稱是函數(shù)的最小值,記作.【】奇偶性(4)函數(shù)的奇偶性①定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)叫做奇函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱)(2)利用圖象(圖象關(guān)于原點(diǎn)對(duì)稱)如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)叫做偶函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱)(2)利用圖象(圖象關(guān)于y軸對(duì)稱)②若函數(shù)為奇函數(shù),且在處有定義,則.③奇函數(shù)在軸兩側(cè)相對(duì)稱的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對(duì)稱的區(qū)間增減性相反.④在公共定義域內(nèi),兩個(gè)偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個(gè)偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個(gè)偶函數(shù)與一個(gè)奇函數(shù)的積(或商)是奇函數(shù).〖補(bǔ)充知識(shí)〗函數(shù)的圖象(1)作圖利用描點(diǎn)法作圖:①確定函數(shù)的定義域; ②化解函數(shù)解析式;③討論函
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1