【摘要】天星教育網(wǎng)版權所有高三數(shù)學第二輪復習專題——《圓錐曲線》(一)典型例題講解:例1、過點(1,0)的直線l與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與右焦點關于直線l對稱,試求直線l與橢圓C的方程命題意圖本題利用對稱問題來考查用待定系數(shù)法求曲線方程的方法,設計新穎,基礎性強知識依托待定
2025-06-07 19:25
【摘要】橢圓中的相關問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38
【摘要】第十章圓錐曲線★知識網(wǎng)絡★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質幾何性質應用應用標準方程幾何性質應用圓錐曲線直線與圓錐曲線位置關系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【摘要】圓錐曲線的應用高三備課組一、基本知識概要:解析幾何在日常生活中應用廣泛,如何把實際問題轉化為數(shù)學問題是解決應用題的關鍵,而建立數(shù)學模型是實現(xiàn)應用問題向數(shù)學問題轉化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應用,說明數(shù)學建模的方法,理解函數(shù)與方程、等價轉化、分類討論等數(shù)學思想。二、例題:例題1:設有一顆慧星沿一橢圓軌道
2024-11-09 08:48
【摘要】2020屆高考數(shù)學復習強化雙基系列課件79《圓錐曲線-圓錐曲線的應用》圓錐曲線定義應用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構成的三角形,常用第一定義結合正余弦定理;·涉及焦點、準線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2024-11-11 08:49
【摘要】高二圓錐曲線知識點總結與例題分析一、橢圓1、橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標準方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:①以上方程中的大小,其中;②在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如
2025-07-24 12:32
【摘要】解析幾何專題·經(jīng)典結論收集整理:宋氏資料2016-1-1有關解析幾何的經(jīng)典神級結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質)2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點考查推理運算能力和數(shù)學綜合素質。本文筆者嘗試對該題的結論作一般化推廣,并對其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點,且面積,其中為坐標原點。(Ⅰ)證明和均為定值;(Ⅱ)設線段的中點為,求的最大值;(Ⅲ)
2025-07-25 00:15
【摘要】WORD資料可編輯圓錐曲線光學性質的證明及應用初探一、圓錐曲線的光學性質1.1 橢圓的光學性質:從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學特性,常被用來設計一些照明設備或聚熱裝置.例如在處放置一個熱源,那
2025-06-22 16:01
【摘要】圓錐曲線的統(tǒng)一焦半徑公式在解題中的應用宜昌二中黃群星我們在解決有關直線與圓錐曲線的關系問題時,經(jīng)常會用到焦半徑公式。解決這類問題,我們可以用到的公式有:平面上兩點之間的距離公式,弦長公式,三種圓錐曲線的焦半徑公式,和圓錐曲線的統(tǒng)一焦半徑公式。最后一個公式往往被大家忽視,現(xiàn)在我想專門談談這個公式的使用。一.在橢圓中的運用:例1:已知橢圓的離心率為,過右焦點F
2025-03-25 00:04
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎·鞏固1直線=1與橢圓=1相交于A、B兩點,該橢圓上點P使得△PAB的面積等于3,這樣的點P共有()思路解析:設P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2025-08-05 03:29
【摘要】......有關解析幾何的經(jīng)典結論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質)2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.