【正文】
輥型蠕動泵,產生所需的脈沖序列的電機驅動的硬件。 ( iii) Peltierbased 溫度控制器 系統(tǒng)開發(fā)是用來判斷兩個酶活性和底物 濃度,在生物流體在不同溫度 25 ℃ , 30 176。 ( logT)或( 1 / t) 為稱為E/OD 吸光度: A=log(1/T)=log100/(%transmission) (5) A = 2 log(%transmission). 因此, A = kct. 如果 t 是常數(shù) ,那么 AαC. 在這一系統(tǒng)中,基本的要求是衡量光密度 /吸收,然后準確濃度下運行測試參數(shù)。它已減少臨床實驗室上的負載,在很大的程度上減少了時間,并盡量減少參與的實驗室工作人員。該原型測試和評估了 1000血樣成功 17血液參數(shù)。C, 30176。C, and 37176。評估工作是在政府的醫(yī)學院和醫(yī)院,生物化學系。儀器開發(fā)被列為半自動儀儀器 [ 2 ] ,具有精密度和準確度。 ( ii)基于微控制器的硬件 圖 3 是 基本的系統(tǒng)模塊由光源,光學模塊,一個過濾器方向盤,石英試管與反應混合物,照片探測器和基于單片機信號處理電路。 C 和 37 176。驅動器硬件水平提高步進電機的需要電壓脈沖序列。在光學機械裝配,采取特殊的設計,使每一個組成部分適當?shù)呐浜瞎廨S。 輸出放大器由 12 位模數(shù)轉換器轉換成數(shù)字。最有效的工作是批次的試驗樣品是一起分析 . 通過這種方式,可以實現(xiàn)在不影響性能的工作方式 . 終點樣品可優(yōu)先考慮在任何時候在例行運行 . 菜單驅動的系統(tǒng)軟件提供了一個友好的環(huán)境,有許多吸引人的特點,便于操作的培訓,運營商要求最低。該項目是由科學技術部資助,印度新德里 參考文獻: [1] G. G. Guilbault, Study of Handbook of Enzymatic Methods of Analysis, Marcel Dekker, New York, NY, USA, 1976. [2] R. Haeckel, “General principles for the classification of analysers,”Journal of Automated Methods and Management in Chemistry, vol. 10, no. 4, pp. 164–166, 1988. [3] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman amp。 不同的濃度測量模式,用不同的公式來表示。這些過濾器會自動選擇不同的測試狀態(tài)。這種泵可校準抽吸所需數(shù)量的水,試劑和樣品。系統(tǒng)可以選擇任何所需的溫度保持細胞的流動在選定的溫度,因為酶是相對脆弱的物質,有失活或變性 [ 1 ] 的傾向 ??驁D可細分為以下幾個主要部分組成: ( i) 微控制器和存儲器 ( ii) 外設和接口 系統(tǒng)設計是基于 80C31 單片機 [ 4 ],通過連接地址總線,數(shù)據(jù)總線和控制總線的 64 千字節(jié)的 EPROM 27C512的監(jiān)測和控制程序, 24 字節(jié)的 RAM 的備用電池的臨時數(shù)據(jù)存儲, 24小時的結果存儲容量和外設 , I / O 設備 8255 秒用于接口的 32 鍵鍵盤, 12 位 A / D 轉換 22 器, 40個欄 熱微型打印機, 30 個字符 8 行字母 /圖形液晶顯示屏。所有初級保健中心,社區(qū)保健中心,和區(qū)級醫(yī)院 都 可以 使用 本機。 1. 導言 為了衡量進展的酶促反應,并衡量總濃度變化的反應 /基板,各種技術 [1],如分光,偏振,安培,電化學,庫侖,極譜法,放射化學和熒光可用。Hospital, Sector32, Chandigarh. 17 blood parameters have been analysed and results have been found to be satisfactory. Figure 7: Flow diagram of system software. 4. CONCLUSION The instrument developed is universally useful for small clinical laboratories, big hospitals, and nursing homes for qualitative analysis of blood. The instrument is capable of handling a reasonable amount of workload. The work organization of the instrument is most efficient when batches of tests are analyzed together. In this way, a discretionary approach can be achieved without affecting the performance of instrument. End point samples can be given priority at any time during a routine system software provides a userfriendly environment 19 with many attractive features for easy operation requiring minimum training of the operator. The technology of this system has been transferred to Indian industry [10]. ACKNOWLEDGMENTS The authors are deeply grateful to Dr Pawan Kapur, Director,Dr P. K. Jain and Mr P. K. Goel, Scientists of CSIO,Chandigarh, and Dr Jasbinder Kaur, Acting Head, Department of Biochemistry, GMCH32, Chandigarh, for providing the necessary facilities and help during the progress of work and clinical evaluation of the system. The project was sponsored by the Department of Science and Technology, New Delhi, India. REFERENCES [1] G. G. Guilbault, Study of Handbook of Enzymatic Methods of Analysis, Marcel Dekker, New York, NY, USA, 1976. [2] R. Haeckel, “General principles for the classification of analysers,”Journal of Automated Methods and Management in Chemistry, vol. 10, no. 4, pp. 164–166, 1988. [3] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman amp。 Management in Chemistry, India Clinical chemistry analyser is a highperformance microcontrollerbased photometric biochemical analyser to measure various blood biochemical parameters such as blood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate amino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purposes and classifying various disorders and diseases such as diabetes, liver malfunctioning, renal diseases, and so forth. An inexpensive clinical chemistry analyser developed by the authors is described in this paper. This is an open system in which any reagent kit available in the market can be used. The system is based on the principle of absorbance transmittance photometry. System design is based around 80C31 microcontroller with RAM, EPROM, and peripheral interface devices. The developed system incorporates light source, an optical module, interference filters of various wave lengths, peltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kiic test graph, 40 columns mini thermal printer, and also 32key keyboard for executing various functions. The lab tests conducted on the i