【正文】
ree39。一個(gè)倒立擺在本質(zhì)上就是做相同的事情。這是有可能的只要運(yùn)用通過馬達(dá)的小車一個(gè)力該力可以與 “ 自由 ” 擺的動(dòng)力學(xué)抵消。 實(shí)時(shí)倒立擺被作為一個(gè)基準(zhǔn),去測(cè)試軟件在狀態(tài)空間控制器運(yùn)算法則下的有效性和性能,也就是實(shí)用的操作系統(tǒng)。我們提出線形逆模糊化算法它能這個(gè)區(qū)域勸導(dǎo)仿射結(jié)構(gòu)和產(chǎn)生一個(gè)塊仿射控制 器。這個(gè)報(bào)道 MATLAB 文件收藏是由少量的控制系統(tǒng)分 析的實(shí)際任務(wù)而發(fā)展的,設(shè)計(jì)和發(fā)展實(shí)際問題。這個(gè)學(xué)習(xí)的目的是 穩(wěn)定倒立擺這樣小車的位置在軌道上被控制得快速和準(zhǔn)確以使擺在這一裝置下始終垂直在它的倒立位置。然而,一個(gè)SMC 有一些缺點(diǎn),涉及控制輸入信號(hào)的振動(dòng)。估算的精確性是這個(gè)計(jì)劃中最中堅(jiān)的評(píng)定參數(shù),與上面的不確定的范圍正好相反。此外,每個(gè)模糊控制器調(diào)整參數(shù) (即形狀以及輸 入輸出的變量的值的隸屬函數(shù))會(huì)在同一時(shí)間在某些區(qū)域影響參數(shù)的值。 在任何控制問題的陳述中,在控制的設(shè)計(jì)發(fā)展中現(xiàn)行的設(shè)備和數(shù)學(xué)模型之間總是有著明顯的差異。一個(gè)可變結(jié)構(gòu)系統(tǒng),被認(rèn)為是各子系統(tǒng)的結(jié)合其中每個(gè)子系統(tǒng)有一個(gè)確定的控制結(jié)構(gòu)并且結(jié)果是對(duì)系統(tǒng)結(jié)構(gòu) 給定的區(qū)域是適用的。 滑模設(shè)計(jì)處理兩種結(jié)構(gòu)組成。工業(yè)的案例學(xué)習(xí),介紹了滑??刂茍?zhí)行的 成果,被用于闡述成功的實(shí)際的理論上的應(yīng)用。 我們將提供讀者一個(gè)徹底的滑??刂祁I(lǐng)域的基礎(chǔ)并且適合大學(xué)生使用的經(jīng)典控制理論和一寫狀態(tài)空間方 法的知識(shí)的基礎(chǔ)知識(shí)。 在滑??刂浦校?VSCS 被設(shè)計(jì)成操作并強(qiáng)迫系統(tǒng)狀態(tài)位于鄰近的開關(guān)方程中。堅(jiān)固的操縱控制器設(shè)計(jì)的一 個(gè)特殊的方法就是所謂的滑模控制方法 。 我們將從系統(tǒng)設(shè)計(jì)開始;分析二級(jí)倒立擺的控制行為。最終控制器的非線性性質(zhì)來源于各級(jí)模糊控制的控制器,顯著地逆模糊化方法(諸如中心區(qū))。為了在繼電器控制中獲得濾波中斷滑模控制器的方案已經(jīng)被提出了。此外,我們可以特意使用一個(gè)簡(jiǎn)化的模型。這個(gè)問題越來越復(fù)雜當(dāng)一個(gè)柔韌的帚代替一個(gè)剛硬的帚被使用。隨后我們將展示如何為系統(tǒng)設(shè)計(jì)一個(gè)模糊控制裝 置。 如此倒立擺是非常有用的在決定是否一個(gè)特殊的時(shí)序安排的選擇比另一個(gè)好,在哪個(gè)情形下,在什么程度內(nèi)等等。為了實(shí)現(xiàn)它,嚴(yán)格的控制理論是必須的。這個(gè)支點(diǎn)是安在一個(gè)車架上,它的轉(zhuǎn)動(dòng)方向是水平的偏轉(zhuǎn)。 analyzing control behavior of a twostage inverted pendulum. We will then show how to design a fuzzy controller for the system. We will describe a control curve and how it differs from that of conventional controllers when using a fuzzy controller. Finally, we will discuss how to use this curve to define labels and membership functions for variables, as well as how to create rules for the controller. In the formulation of any control problem there will typically be discrepancies between the actual plant and the mathematical model developed for controller mismatch may be due to unmodelled dynamics, variation in system parameters or the approximation of plex plant behavior by a straightforward engineer must ensure that the resulting controller has the ability to produce the required performance levels in practice despite such plant/model mismatches. This has led to an intense interest in the development of socalled robust control methods which seek to solve this problem. One particular approach to robust control controller design is the socalled sliding mode control methodology. The Inverted Pendulum is one of the most important classical problems of Control Balancing (Inverted Pendulum on a cart) is a well known example of nonlinear, unstable control problem. This problem bees further plicated when a flexible broom, in place of a rigid broom, is employed. Degree of plexity and difficulty in its control increases with its flexibility. This problem has been a research interest of control engineers. Control of Inverted Pendulum is a Control Engineering project based on the FLIGHT SIMULATION OF ROCKET OR MISSILE DURING THE INITIAL STAGES OF FLIGHT. The AIM OF THIS STUDY is to stabilize the Inverted Pendulum such that the position of the carriage on the track is controlled quickly and accurately so that the pendulum is always erected in its inverted position during such movements. This practical exercise is a presentation of the analysis and practical implementation of the results of the solutions presented in the papers, “Robust Controller for Nonlinear amp。 pendulum dynamics. The correct force has to be calculated measuring the instant values of the horizontal position and the pendulum angle (obtained . through two potentiometers). The system pendulum+cart+motor can be modeled as a linear system if all the parameters are known (masses, lengths, etc.), in order to find a controller to stabilize it. If not all the parameters are known, one can however try to 39。然而,