【摘要】§雙曲線的簡單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.理解并掌握雙曲線的幾何性質(zhì)【重點】雙曲線的幾何性質(zhì)【難點】雙曲線的幾何性質(zhì)一、自主學(xué)習(xí)56-58頁,完成下列問題1.雙曲線位于四條直線___________
2024-11-18 16:52
【摘要】第3章——空間向量及其運算空間向量及其線性運算[學(xué)習(xí)目標(biāo)],幾何表示法、字母表示法...1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接]觀察正方體中過同一個頂點的
2024-11-18 08:08
【摘要】第3章——空間向量的應(yīng)用直線的方向向量與平面的法向量[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接],它們乊間有何關(guān)系?答:相互平行.?
【摘要】第3章——空間線面關(guān)系的判定[學(xué)習(xí)目標(biāo)]、線面、面面的垂直和平行關(guān)系.、面位置關(guān)系的一些定理(包括三垂線定理)..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接]
2024-11-17 19:02
【摘要】1.如圖3-5,已知兩條異面直線所成的角為θ,在直線a、b上分別取E、F,已知A’E=m,AF=n,EF=l,求公垂線AA′的長d.EFEAAAAF?????解:22()EFEAAAAF??????2222()EAAAAFE
2024-11-18 00:19
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】初步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點是怎么來的?(2)在這個運動過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點21,FF的距離的為常數(shù)
2024-12-05 06:41
【摘要】直線與拋物線的位置關(guān)系(二)【學(xué)習(xí)目標(biāo)】解決直線與拋物線位置有關(guān)的簡單問題,進一步體會數(shù)形結(jié)合的思想.【自主檢測】3x-4y-12=0上的拋物線標(biāo)準(zhǔn)方程是()(A)y2=16x或x2=16y(B)y2=16x或x2=12y(C)x2=-12y或y2=16x(D)x2=16y或
2024-11-19 23:25
【摘要】§拋物線的簡單幾何性質(zhì)(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.掌握拋物線的幾何性質(zhì);2.拋物線與直線的關(guān)系.【重點】拋物線與直線的關(guān)系【難點】拋物線與直線的關(guān)系一、自主學(xué)習(xí)預(yù)習(xí)教材P70~P72,找出疑惑之處
【摘要】§拋物線的簡單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)拋物線的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫圖【重點】根據(jù)拋物線的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;
2024-11-28 00:10
【摘要】第二章一、選擇題1.下列說法中正確的是()A.任意兩個空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2024-11-30 11:35
【摘要】高中新課標(biāo)數(shù)學(xué)選修(2-1)《空間向量與立體幾何》測試題一、選擇題1.空間的一個基底??,,abc所確定平面的個數(shù)為()A.1個B.2個C.3個D.4個以上答案:2.已知(121)A?,,關(guān)于面xOy的對稱點為B,而B關(guān)于x軸的對稱點為C,則BC?(
2024-11-15 13:15
【摘要】充分條件與必要條件【學(xué)習(xí)目標(biāo)】理解充分不必要條件、必要不充分條件的概念;會判斷命題的充分條件、必要條件.【自主學(xué)習(xí)】,并判斷是真命題還是假命題?(1)若x>a2+b2,則x>2ab;(2)若ab=0,則a=0.其中命題(1)是命題,也即是由“x>a2+
【摘要】曲線與方程(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐。【學(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過曲線的方程,研究曲線的性質(zhì).【重點】求曲線的方程【難點】通過曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【摘要】曲線與方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點】理解曲線的方程、方程的曲線【難點】求曲線的方程一、自主學(xué)習(xí)P34~P36,找出疑惑之處復(fù)習(xí)1:畫出函數(shù)22yx?
2024-11-18 16:53
【摘要】軌跡方程的求法【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.掌握常見的曲線軌跡方程的求法;【重點】常見的曲線軌跡方程的求法【難點】常見的曲線軌跡方程的求法一、復(fù)習(xí)回顧:方法適用范圍關(guān)鍵待定系數(shù)法直接法
2024-11-18 23:03