【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,
2024-11-11 21:10
【摘要】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【摘要】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-09 01:05
【摘要】課題:空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示學(xué)習(xí)目標(biāo):知識(shí)與技能:掌握空間直角坐標(biāo)系;及空間向量的坐標(biāo)表示;過程與方法:掌握空間右手直角坐標(biāo)系的概念,會(huì)確定一些簡(jiǎn)單幾何體(正方體、長(zhǎng)方體)的頂點(diǎn)坐標(biāo);情感態(tài)度與價(jià)值觀:由平面向量的坐標(biāo)運(yùn)算體系推廣到空間向量的坐標(biāo)運(yùn)算體系培養(yǎng)類比推理思想和一般到特殊的辨證思維能力。
2024-12-03 00:16
2024-11-10 01:04
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-12 19:04
【摘要】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-18 00:48
【摘要】第二章第2課時(shí)一、選擇題1.設(shè)P(-5,1,-2),A(4,2,-1),若OP→=AB→,則點(diǎn)B應(yīng)為()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)[答案]A[解析]∵OP→=AB→=OB→-OA→,
【摘要】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2025-08-05 06:24
【摘要】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是存在實(shí)數(shù),使=.,,,abpabxypxayb如果兩個(gè)向量不共線,則向量與向量共面的充要
2025-07-23 08:50
【摘要】......向量的坐標(biāo)表示及其運(yùn)算【知識(shí)概要】1.向量及其表示1)向量:我們把既有大小又有方向的量叫向量(向量可以用一個(gè)小寫英文字母上面加箭頭來表示,如讀作向量,向量也可以用兩個(gè)大寫字母上面加箭
2025-06-30 20:33
【摘要】{a,b,c}是空間向量的一個(gè)基底,則可以與向量p=a+b,q=a-b構(gòu)成基底的向量是()A.a(chǎn)B.bC.a(chǎn)+2bD.a(chǎn)+2c解析:選D.∵a+2c,a+b,a-b為不共面向量,∴a+2c與p、q能構(gòu)成一個(gè)基底.OABC中,OA→=
2024-12-05 06:40
【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè)的向量,那么對(duì)于這一平面內(nèi)的任意向量a,一對(duì)實(shí)數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【摘要】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對(duì)應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17