【摘要】復(fù)習(xí):1、等差數(shù)列的概念;2、等差數(shù)列的定義式;3、等差數(shù)列的通項(xiàng)公式。d=an-an-1an=a1+(n-1)d練習(xí)1、等差數(shù)列{an}的前三項(xiàng)和為12,前三項(xiàng)積為48,求an。三個(gè)數(shù)等差的設(shè)法:a-d,a,a+d練習(xí)2、成等差數(shù)列的四個(gè)數(shù)之和為26,第二個(gè)與第三個(gè)數(shù)之積為40,
2025-01-07 11:52
【摘要】課前探究學(xué)習(xí)課堂講練互動(dòng)【課標(biāo)要求】1.進(jìn)一步了解等差數(shù)列的項(xiàng)與序號(hào)之間的規(guī)律.2.理解等差數(shù)列的性質(zhì).3.掌握等差數(shù)列的性質(zhì)及其應(yīng)用.【核心掃描】1.等差數(shù)列的性質(zhì)及證明.(重點(diǎn))2.運(yùn)用等差數(shù)列定義及性質(zhì)解題.(難點(diǎn))第2課時(shí)等差數(shù)列的性質(zhì)及其應(yīng)用課前探
2025-08-05 15:33
【摘要】Ch2-1SequencesandSummations※Sequence(數(shù)列)Def1.AsequenceisafunctionffromA?Z+(orA?N)toasetS.Weuseantodenotef(n),andcallanater
2025-04-19 18:57
【摘要】教學(xué)目標(biāo):,理解并掌握等差數(shù)列的通項(xiàng)公式,能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題。,進(jìn)一步提高學(xué)生的推理歸納能力。重點(diǎn)難點(diǎn)“等差”特點(diǎn)的理解、把握及應(yīng)用復(fù)習(xí)回顧:你還記得嗎?情景導(dǎo)入:情景引入請(qǐng)看以下幾
2025-08-05 20:21
【摘要】等差數(shù)列的前n項(xiàng)和(二)自主學(xué)習(xí)知識(shí)梳理1.前n項(xiàng)和Sn與an之間的關(guān)系對(duì)任意數(shù)列{an},Sn是前n項(xiàng)和,Sn與an的關(guān)系可以表示為an=??????n=1?,?n≥2?.2.等差數(shù)列前n項(xiàng)和公式Sn=____________=______
2024-11-19 05:04
【摘要】等差數(shù)列的前n項(xiàng)和(一)自主學(xué)習(xí)知識(shí)梳理1.把a(bǔ)1+a2+?+an叫數(shù)列{an}的前n項(xiàng)和,記做________.例如a1+a2+?+a16可以記做________;a1+a2+a3+?+an-1=________(n≥2).2.若{an}是等差數(shù)列,則Sn可以用首項(xiàng)a1和末
【摘要】定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無(wú)序的。(2)數(shù)列中的數(shù)是可重復(fù)的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識(shí)回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類:項(xiàng)數(shù)有限的數(shù)列叫有窮數(shù)列;項(xiàng):數(shù)列中的每一個(gè)數(shù)叫做這
2024-11-18 08:48
【摘要】等差數(shù)列2020-11-3知識(shí)歸納:容?定義.等差數(shù)列通項(xiàng).前n項(xiàng)和.主要性質(zhì).2.等差數(shù)列的定義、用途及使用時(shí)需注意的問(wèn)題?
2024-11-09 00:25
【摘要】等差數(shù)列的前n項(xiàng)和輝南縣綜合高中孟德來(lái)(1)、已知等差數(shù)列中任意兩項(xiàng),則一.復(fù)習(xí)知識(shí)點(diǎn)1、等差數(shù)列的通項(xiàng)公式:2、等差數(shù)列的性質(zhì):若則(2)、(3)、等差數(shù)列a
2024-11-09 00:28
【摘要】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計(jì)):06年:全國(guó)理Ⅰ,福建;07年:全國(guó)理Ⅰ,理Ⅱ;08年:全國(guó)理Ⅱ.一、基礎(chǔ)知識(shí)3.
2024-11-11 02:52
【摘要】《等差數(shù)列》同步練習(xí)基礎(chǔ)達(dá)標(biāo):1.等差數(shù)列40,37,34中的第一個(gè)負(fù)數(shù)項(xiàng)是()A.第13項(xiàng)B.第14項(xiàng)C.第15項(xiàng)D.第16項(xiàng)2.在-1與7之間順次插入三個(gè)數(shù),使這五個(gè)數(shù)成等差數(shù)列,則此數(shù)列為________.{an}中,若a3+a6+a9=12,a3·a6·a9=28,則an=______.{an}中,an
2025-08-05 07:11
【摘要】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2025-08-16 00:55
【摘要】看圖片數(shù)個(gè)數(shù)?數(shù)列數(shù)列數(shù)列數(shù)列等差數(shù)列的概念復(fù)習(xí)回顧數(shù)列的定義,通項(xiàng)公式,遞推公式按一定次序排成的一列數(shù)叫做數(shù)列。一般寫成a1,a2,a3,…,an,…,簡(jiǎn)記為{an}。如果數(shù)列{an}的第n項(xiàng)an與n的
2025-08-05 10:43
【摘要】、b、c成等差數(shù)列2cab??2b=a+c????1.{an}為等差數(shù)列?an+1-an=d?an+1=an+dan=a1+(n-1)d?an=kn+b(k、b為常數(shù))b為a、c的等差中項(xiàng)知識(shí)回顧結(jié)論歸納:數(shù)列{an}是公差為d的等差數(shù)列。
【摘要】等差數(shù)列定義:按一定次序排列的一列數(shù)叫數(shù)列(3)數(shù)列中的數(shù)是有順序的,而數(shù)集合的數(shù)是無(wú)序的。(2)數(shù)列中的數(shù)是可重復(fù)的,而數(shù)集中的數(shù)是互異的。(1)數(shù)列與數(shù)集都是具有某種共同屬性的數(shù)的全體。知識(shí)回顧數(shù)列與數(shù)集有何區(qū)別和聯(lián)系數(shù)列分類:項(xiàng)數(shù)有限的數(shù)列叫有窮數(shù)列;