【摘要】第七節(jié)函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性.),,(,),()(0000的增量為自變量在點(diǎn)稱內(nèi)有定義在設(shè)函數(shù)xxxxxUxxUxf???????.)()()(00的增量相應(yīng)于為稱xxfxfxxfy??????xy0xy00xxx??0)(xfy?x?xx??00xx?y?y?
2025-04-21 04:08
【摘要】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2025-08-01 16:25
【摘要】1微積分基本公式問題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運(yùn)動中路
2025-02-21 10:32
【摘要】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無窮數(shù)列,簡稱數(shù)列,記為}{nx.其中的每個數(shù)稱為數(shù)列的項,nx稱為通項(一般項).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【摘要】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點(diǎn)分母不為零們的和、差、積、商則它處可導(dǎo)在點(diǎn)如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【摘要】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎(chǔ),主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項或一般項;??na正整數(shù)n稱為的下標(biāo)。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-05 06:53
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當(dāng)xxxfx?問題:如何用數(shù)學(xué)語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時有定義,若
2025-07-22 11:10
【摘要】一、概念的引入§2.數(shù)列的極限我們在緒論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【摘要】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導(dǎo)數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設(shè)D是平面上的一個點(diǎn)集.如果對于每個點(diǎn)P(x,y)?D,變量z按照一定法則總有確定的值和它對應(yīng),
2025-04-28 23:40
【摘要】備考基礎(chǔ)·查清熱點(diǎn)命題·悟通遷移應(yīng)用·練透課堂練通考點(diǎn)課下提升考能首頁上一頁下一頁末頁結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【摘要】微積分基本定理(79)31、變速直線運(yùn)動問題變速直線運(yùn)動中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【摘要】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計算機(jī)和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學(xué)習(xí),使學(xué)生對一元函數(shù)微分、積分有初步認(rèn)識和了解,使學(xué)生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運(yùn)算能力和綜合運(yùn)用所學(xué)知識分析問題、解決問題的能力
2025-01-19 21:35
【摘要】等價無窮小在求函數(shù)極限中的應(yīng)用及推廣摘要利用等價無窮小作代換是計算極限的一種常用、方便、有效的方法,圍繞無窮小之比、變上限積分的極限、冪指函數(shù)和Taylor公式,利用等價無窮小代換思想進(jìn)行分析應(yīng)用,以此達(dá)到極限求解中化繁為簡、化難為易得目的。在求極限過稱中,用等價無窮小代替,起到了一種化繁為間的作用,在函數(shù)中也能使用等價無窮小前言設(shè)f在某內(nèi)有定義,若則稱f
2025-06-25 05:40
【摘要】話說微積分制作人:項晶菁數(shù)學(xué)的核心領(lǐng)域是:?代數(shù)學(xué)——研究數(shù)的理論;?幾何學(xué)——研究形的理論;?分析學(xué)——溝通形與數(shù)且涉及極限運(yùn)算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學(xué)分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學(xué)
2025-01-20 00:10