【正文】
進(jìn)展成果:在植物中分析基因在干旱脅迫反應(yīng)中的表達(dá),以及與應(yīng)激反應(yīng)和脅迫耐受性有關(guān)的基因功能的總結(jié)。值得注意的是,通過(guò)基因轉(zhuǎn)移引進(jìn)了許多脅迫誘導(dǎo)基因,這些基因改善了植物的抗逆性。例如也介紹了如何通過(guò)轉(zhuǎn)基因利用干旱誘導(dǎo)基因增強(qiáng)植物的耐干旱能力。這一結(jié)果的差異主要是由于在這兩個(gè)系統(tǒng)中有不同的基因排列順序,以及植物生長(zhǎng)和脅迫處理?xiàng)l件的不同。與此相反,大于98%高鹽度和100%脫落酸誘導(dǎo)基因也可以引起干旱脅迫。第一組包括蛋白質(zhì),它最可能在非生物脅迫耐受性方面起作用。在水稻中有73個(gè)基因被確定為脅迫誘導(dǎo)基因,其中有51個(gè)已經(jīng)被報(bào)道在擬南芥中執(zhí)行類似的功能。另外,最近的代謝組分析顯示糖和棉子糖在干旱脅迫下顯著積累。脫落酸是從頭合成的一種物質(zhì),它主要是針對(duì)干旱和高鹽脅迫的。SRK2E參與氣孔關(guān)閉,但不參與種子萌發(fā)。他們保守的DNA結(jié)合基序是A/GCCGAC。最近,一個(gè)DREB2的活化狀態(tài)被證明在轉(zhuǎn)基因植物擬南芥中轉(zhuǎn)移了目的脅迫誘導(dǎo)基因并提高了擬南芥的耐旱性。這些基因包括編碼一個(gè)Clp蛋白酶調(diào)節(jié)亞基的ERD1基因。這些AREB/ABF蛋白質(zhì)需要一個(gè)脫落酸介導(dǎo)信號(hào)的激活。這些MYC和MYB蛋白質(zhì)在內(nèi)源性脫落酸積累的情況下被合成,它們的作用可以在稍后的應(yīng)激反應(yīng)階段中確定。據(jù)觀察,在RD26基因過(guò)度表達(dá)的轉(zhuǎn)基因植物和具有RD26阻遏基因的植物中脫落酸和脅迫誘導(dǎo)基因被上調(diào)。參考文獻(xiàn)[1] Abe H, Urao T, Ito T, Seki M, Shinozaki K, YamaguchiShinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15, 63–78.[2] Abe H, YamaguchiShinozaki K, Urao T, Iwasaki T, HosokawaD, Shinozaki K. 1997. Role of Arabidopsis MYC andMYB homologs in drought and abscisic acidregulated gene expression. The Plant Cell 9, 1859–1868.[3]Bartels D, Sunkars R. 2005. Drought and salt tolerance in Reviews in Plant Science 24, 23–58.[3] Choi H, Hong JH, Ha J, Kang JY, Kim SY. 2000. ABFs, a familyof ABAresponsive elements binding factors. Journal of BiologicalChemistry 275, 1723–1730.[4] Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, MiuraS, Seki M, Shinozaki K, YamaguchiShinozaki K. genes in rice, Oryza sativa L, encode transcription activatorsthat function in drought, highsalt and coldresponsive gene expression. The Plant Journal 33, 751–763.[5] Fowler SG, Thomashow MF. 2002. Arabidopsis transcriptomeprofiling indicates that multiple regulatory pathways are activatedduring cold acclimation in addition to the CBF cold responsepathway. The Plant Cell 14, 1675–1690.[6] Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, OhmeTakagi M, Tran LSP, YamaguchiShinozaki K, Shinozaki . A dehydrationinduced NAC protein, RD26, is involved in anovel ABAdependent stresssignaling pathway. The Plant Journal39, 863–876.[7] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M,Hiratsu K, OhmeTakagi M, Shinozaki K, YamaguchiShinozakiK. 2005. AREB1 is a transcription activator of novel ABREdependentABA signaling that enhances drought stress tolerancein Arabidopsis. The Plant Cell 17, 3470–3488.[8] Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R,Shinozaki K,YamaguchiShinozaki K. 2006. Abscisic aciddependentmultisite phosphorylation regulates the activity of a transcriptionactivator AREB1. Proceedings of the National Academyof Sciences, USA 103, 1988–1993.[9] Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M,Shinozaki K, YamaguchiShinozaki K. 2006. Functional analysisof rice DREB1/CBFtype transcription factors involved in coldresponsivegene expression in transgenic rice. Plant and Cell Physiology 47, 141–153.[10] Iuchi S, Kobayshi M, Taji T, Naramoto M, Seki M, Kato T,Tabata S, Kakubari Y, YamaguchiShinozaki K, Shinozaki . Regulation of drought tolerance by gene manipulation of 9cisepoxycarotenoid, a key enzyme in abscisic acid biosynthesisin Arabidopsis. The Plant Journal 27, 325–333.[11] JagloOttosen KR, Gilmour SJ, Zarka DG, Schabenberger O,Thomashow MF. 1998. Arabidopsis CBF1 overexpression inducescoe genes and enhances freezing tolerance. Science 280, 104–106.[12] Kang JY, Choi HI, Im MY, Kim SY. 2002. Arabidopsis basicleucine zipper proteins that mediate stressresponsive abscisic acidsignaling. The Plant Cell 14, 343–357.[13] Kasuga M, Liu Q, Miura S, YamaguchiShinozaki K, Shinozaki . Improving plant drought, salt, and freezing tolerance by gene