【摘要】數(shù)列綜合練習(xí)一、選擇題:本大題共6小題,每小題6分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5等于( ). 2.若數(shù)列{an}的前n項和Sn=2n2-3n(n∈N*),則a4等于 3.已知{an},{bn}都是等差數(shù)列,若a1
2025-08-05 07:27
【摘要】等差數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2025-08-16 02:28
【摘要】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
【摘要】數(shù)列的通項公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項起,它的每一項與前一項的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-10 00:27
【摘要】等差數(shù)列求和公式教學(xué)目標(biāo)1.知識目標(biāo)(1)掌握等差數(shù)列前n項和公式,理解公式的推導(dǎo)方法;(2)能較熟練應(yīng)用等差數(shù)列前n項和公式求和。2.能力目標(biāo)經(jīng)歷公式的推導(dǎo)過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,體驗從特殊到一般的研究方法,學(xué)會觀察、歸納、反思和邏輯推理的能力。3.情感目標(biāo)通過生動具體的現(xiàn)實問題,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數(shù)學(xué)的心
2025-04-17 07:44
【摘要】用不動點法求遞推數(shù)列(a2+c2≠0)的通項1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2025-06-25 01:55
【摘要】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習(xí)若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒?、公式法已知數(shù)列的前項和與的關(guān)系,求數(shù)列的通項可用公式求解.例2.①
2025-06-26 05:29
【摘要】數(shù)列求和、數(shù)列的綜合應(yīng)用練習(xí)題1.數(shù)列共十項,且其和為240,則的值為()2.已知正數(shù)等差數(shù)列的前20項的和為100,那么的最大值是()
2025-03-25 02:51
【摘要】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公
2025-03-25 02:53
【摘要】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2024-10-21 19:02
【摘要】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時感到很困難。同時,數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問題,找出其中某些常見數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見的數(shù)列通項公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項公式.解:原遞推式可化為:則,……,逐項相加
2025-08-23 21:37
【摘要】等比數(shù)列的通項公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項和_______.【例2】等差數(shù)列的前項和為,且,則.【例3】設(shè)等比數(shù)列的前項和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-25 06:33
【摘要】1.數(shù)列問題研究的一般方法。知識回顧:(1)根據(jù)下列圖形及相應(yīng)點數(shù),完成圖形和點數(shù)的填空,并寫出點數(shù)構(gòu)成數(shù)列{an}的一個通項公式:①——,…()an=___②——,…()an=___??項。第是),則數(shù)列中最大的項,(的通項公式)若數(shù)列 (___*Nnn
2025-03-12 14:51
【摘要】若數(shù)列的前n項和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時,有an=Sn-Sn-110歲的高斯(德國)的算法:n首項與末項的和:1+100=101n第2項與倒數(shù)第2項的和:2+99=101n第3項與倒數(shù)第3項的和:3+98=101n………………………………………n
2025-08-15 20:31
【摘要】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2025-08-16 01:26