【摘要】函數(shù)、方程和不等式的關(guān)系很多學(xué)生在學(xué)習(xí)中把函數(shù)、方程和不等式看作三個(gè)獨(dú)立的知識(shí)點(diǎn)。實(shí)際上,他們之間的聯(lián)系非常緊密。如果能熟練地掌握三者之間的聯(lián)系,并在做題時(shí)靈活運(yùn)用,將會(huì)有事半功倍的收效。★函數(shù)與方程之間的關(guān)系。先看函數(shù)解析式:,這是一個(gè)一次函數(shù),圖像是一條直線。對(duì)于這個(gè)函數(shù)而言,是自變量,對(duì)應(yīng)的是圖像上任意點(diǎn)的橫坐標(biāo);是因變量,也就是函數(shù)值,對(duì)應(yīng)的是圖像上任意點(diǎn)的縱坐標(biāo)。如果令,上
2025-05-16 01:42
【摘要】
2025-11-03 17:26
【摘要】FS-62-08-數(shù)尖02-1/8JXB1無(wú)★代表普通高中、
2025-12-28 02:20
【摘要】第四節(jié)不等式的綜合應(yīng)用基礎(chǔ)達(dá)標(biāo)1.(必修5P94第4題改編)已知(ax-1)(x-1)>0的解集是{x|x<1或x>3},則a的值為_(kāi)_______.解析:由不等式解集是{x|x<1或x>3},可知=3,所以a=1.31a2.已知0<a<1,1log2l
2025-11-03 18:21
【摘要】不等式的綜合應(yīng)用問(wèn)題【要點(diǎn)】1.不等式的應(yīng)用非常廣泛,它貫穿于整個(gè)高中數(shù)學(xué)的始終,諸如集合問(wèn)題,方程(組)的解的討論.函數(shù)定義域、值域的確定,函數(shù)單調(diào)性的研究,三角、數(shù)列、復(fù)數(shù)、立體幾何中的最值問(wèn)題、解析幾何中的直線與圓錐曲線位置關(guān)系的討論,等等,這些無(wú)一不與不等式有著密切的關(guān)系.2.不等式的應(yīng)用大致可分為兩類(lèi):一類(lèi)是建立不等式求參數(shù)的取
2025-11-02 03:20
【摘要】古有關(guān)公千里走單騎,“過(guò)五關(guān)、斬六將”。今天,老師將要帶領(lǐng)同學(xué)們?cè)凇皵?shù)學(xué)的王國(guó)”里過(guò)五關(guān)有兩對(duì)父子在一起散步,為什么數(shù)來(lái)數(shù)去只有3個(gè)人呢?我今年70歲我今年40歲你能用不等式表示爺爺與爸爸的年齡大小關(guān)系嗎?7040704070+5
2025-11-12 23:37
【摘要】不等式的解法????類(lèi)型mdcxbax)2(a)x(fa)x(f)1(??????或形如定理bababa?????baba)iv(baba)iii(baba)ii(baba)i(,Rb,a)1(1????????????
2025-07-18 00:19
【摘要】不等式的性質(zhì)(一)復(fù)習(xí)1、說(shuō)明下列等式變形的理由:移項(xiàng)等式性質(zhì)1:等式兩邊同時(shí)加(減)同一個(gè)數(shù)或式子,等式仍然成立。復(fù)習(xí)2、說(shuō)明下列等式變形的理由:系數(shù)化為1等式性質(zhì)2:等式兩邊同時(shí)乘以(除以)同一個(gè)不為零的數(shù),等式仍然成立。探究1、用“”或””填空:(1)
2025-11-01 05:32
【摘要】知識(shí)回顧:(1)不等式的性質(zhì)有哪些?不等式性質(zhì)1:不等式兩邊加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變.不等式性質(zhì)2:不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變.不等式性質(zhì)3:不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù)
2025-10-28 21:52
【摘要】2011年中考復(fù)習(xí)二輪材料函數(shù)、方程、不等式綜合應(yīng)用專(zhuān)題李建敏一、專(zhuān)題詮釋函數(shù)思想就是用聯(lián)系和變化的觀點(diǎn)看待或提出數(shù)學(xué)對(duì)象之間的數(shù)量關(guān)系。函數(shù)是貫穿在中學(xué)數(shù)學(xué)中的一條主線;函數(shù)思想方法主要包括建立函數(shù)模型解決問(wèn)題的意識(shí),函數(shù)概念、性質(zhì)、圖象的靈活應(yīng)用等。函數(shù)、方程、不等式的結(jié)合,是函數(shù)某一變量值一定或在某一范圍下的方程或不等式,體現(xiàn)了一般到特殊的觀念。也體現(xiàn)了
2025-04-16 12:35
【摘要】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個(gè)不等的關(guān)系;(3)列:根據(jù)這個(gè)不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個(gè)所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫(xiě)出答案,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2025-08-17 07:18
【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】不等式應(yīng)用第一課時(shí)例O通往正西和東北方向的兩條主要公路,為了解決該市交通擁擠問(wèn)題,市政府決定修建一條環(huán)城公路,分別在通往正西和東北方向的公路上選取A、B兩點(diǎn),使環(huán)城公路在A、B間為直線段,要求AB路段與市中心O的距離為10公里,且使A、B間的距離|AB|最小,請(qǐng)你確定A、B兩點(diǎn)的最佳位置。(不要求作近似計(jì)算)
2025-10-10 08:40
【摘要】1.比較實(shí)數(shù)大小的依據(jù):作差—變形—判斷符號(hào)—定結(jié)論2.比較實(shí)數(shù)大小的基本步驟:a-b0?abab?a-b0a=b?a-b=0問(wèn)題1:如何比較兩數(shù)大???.)4)(2()5)(3(.1的大小與比較例????aaaa:作差法比較大小的步驟作差變
2025-07-26 12:19
【摘要】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡(jiǎn)單高次不等式與分式不等式的解法.教學(xué)重點(diǎn):把四類(lèi)分式不等式轉(zhuǎn)化為整式不等式來(lái)解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫(huà)線→選解教學(xué)難點(diǎn):1.分式不等式轉(zhuǎn)化為整式不等式來(lái)解,進(jìn)而化歸到一元一次、一元二次不等式來(lái)解. 2.帶
2025-06-23 23:35