【摘要】【教學目標】1.知識與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象探究一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系,獲得一元二次不等式的解法;3.情態(tài)與價值:激發(fā)學習數(shù)學的熱情,培養(yǎng)勇于探
2025-04-17 01:17
【摘要】一元二次不等式的解法教學設(shè)計方案教學目標(1)掌握一元二次不等式的解法;(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;(3)了解簡單的分式不等式的解法;(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;(5)能夠進行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;(6)通過利用二次函數(shù)的圖象來求解一元二次
2025-04-16 12:45
【摘要】 《一元二次不等式的解法》說課稿 ?。? 。 概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,...
2024-12-03 00:43
【摘要】-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23或x≥12}C.{x|x≥12}D.{x|x≤-23}解析:∵-6x2-x+2≤0?6x2+x-2≥0?(2x-1)·(3x+2)≥0?x≥12或x≤-23,故選B.答案
2024-12-03 00:11
【摘要】x-1x2-40的解集為()A.(-2,0)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)解析:∵不等式x-1x2-40∴x-1?x-2??x+2?0,∴(x+2)(x-1)(x-2)0由標根
2024-11-15 22:59
【摘要】 課時作業(yè)34 一元二次不等式及其解法 [基礎(chǔ)達標] 一、選擇題 1.不等式6x2+x-2≤0的解集為( ) . . 2.不等式0的解集為( ) A.{x|-2x-1...
2025-04-03 00:51
【摘要】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號各端加2,得-2x6?!嗖坏仁浇饧莧x|-2
2025-06-19 08:38
【摘要】3.2一元二次不等式1.一般地,含有一個未知數(shù),且未知數(shù)的最高次數(shù)為二次的整式不等式,叫做一元二次不等式.2.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次方程f(x)=0的解集,就是使二次函數(shù)值等于0時自變量x的取值的集合.3.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次不等式f(x
2024-12-05 10:13
【摘要】第一篇:高中數(shù)學教學案例的反思----一元二次不等式及其解法 高中數(shù)學教學案例的反思 ————一元二次不等式及其解法 一、教學內(nèi)容分析 一元二次不等式的解法是高中重要的基本功,也是初中與高中的...
2024-11-04 12:50
【摘要】課題:§一元二次不等式及其解法第1課時授課類型:新授課【教學目標】1.知識與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象
2024-12-02 10:14
【摘要】24bac???0??0??0??2(0)yaxbxca????的圖象??的根002????acbxax1212,()xxxx?兩相異實根122bxxa???兩相等實根無實根的解集)0(02????acbxax
2024-11-09 22:23
【摘要】一元二次不等式的解法(一)安邊中學鄒英一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系,通過觀察一次函數(shù)的圖像求得一元一次不等式的解集.一、復(fù)習引入考察:對一次函數(shù)y=2x-6,當x為何值時,y=0,即2x-6=0當x為何值時,y0
2024-11-22 02:57
【摘要】一元二次不等式及其解法(1)一、創(chuàng)設(shè)情景,引入新課.問題:某同學想上網(wǎng)查資料,現(xiàn)有兩家網(wǎng)吧可供選擇。A網(wǎng)吧每小時收費(不足1小時的按1小時計算);B網(wǎng)吧的收費原則為,在用戶上網(wǎng)的第1個小時內(nèi)(含恰好1個小時)收費,第2個小時內(nèi)收費,以后每小時減少。(每天上網(wǎng)最多17小時)問:設(shè)該同學上網(wǎng)時間為x小時
2024-11-10 05:43
【摘要】一元二次不等式學案學學習習目目標標1.掌握一元二次不等式的解法,會討論含參數(shù)的一元二次不等式的解集.2.會解決含參數(shù)的一元二次不等式恒成立問題.課課前前準準備備一、知識梳理1.一元二次方程、一元二次不等式、二次函數(shù)三者密切相關(guān),因而在一元二次不等式求解時要注意利用相應(yīng)二次函數(shù)的圖象及相應(yīng)二次方程的
2024-12-05 06:25
【摘要】-不等式的性質(zhì)及一元二次不等式的解法一、不等關(guān)系與不等式1、不等式的定義:用不等號(“≤”,“≥”,“<”,“>”,“≠”)表示不等關(guān)系的式子。用“<”,“>”連接的不等式叫嚴格不等式,用“≤”,“≥”連接的不等式叫非嚴格不等式。2、實數(shù)的特征和實數(shù)大小的比較(1)、特征:(1)任意實數(shù)的平方不小于0:即:∈R,則2≥0;(2)任意兩個實數(shù)都可以比較大小。3、實數(shù)比較
2025-04-16 12:51