【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當∠BED=120°時,求∠EFD的度數.AFDEBC2、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.(
2025-03-24 12:13
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內切圓,求r1;(2)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當n是大于2的正整數時,若半徑為rn的n個等
2025-03-24 06:14
【摘要】絕密☆啟用前22.(2020,安徽)如圖1,在△ABC中,D、E、F分別為三邊的中點,G點在邊AB上,△BDG與四邊形ACDG的周長相等,設BC=a、AC=b、AB=c.(1)求線段BG的長;解:(2)求證:DG平分∠EDF;證:[來源:Z,x(3)連
2025-08-11 01:57
【摘要】經典平行線經典證明題一、選擇題:,能與構成同旁內角的角有()A.5個 B.4個 C.3個 D.2個,AB∥CD,直線MN與AB、CD分別交于點E和點F,GE⊥MN,∠1=130°,則∠2等于()A.50°B.40°C.30
2025-04-04 02:55
【摘要】軸對稱專題[軸對稱圖形]如果一個圖形沿某一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.毛有的軸對稱圖形的對稱軸不止一條,如圓就有無數條對稱軸.[軸對稱]有一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點
2025-03-24 03:56
【摘要】作業(yè):1.從上述案例中選擇一個進行分析與評價?!兜妊切巍返男再|這一案例,本身這是最傳統(tǒng)的一種幾何知識的教學,如何做到傳統(tǒng)的知識教學與新課程改革相聯系,這是我們要考慮的一個問題。這節(jié)課通過學生觀察圖形得出等腰三角形的概念,然后通過學生繪制等腰三角形,得到最實際的一手資料后,讓學生通過討論和動手操作,得出一系列的性質,并且通過證明加以規(guī)范。從上述老師的過程來說,應該是滿足新課程的
2025-08-05 16:44
【摘要】第一篇:中考幾何證明題復習 中考復習 (二)中考復習:幾何證明題 說明一:在直角三角形中,或是題中出現多個直角時,要證明兩個角相等,涉及到的知識點: 同角(或等角)的余角相等。 例1:已知:...
2025-10-06 17:33
【摘要】第一篇:考研數學證明題三大解題方法 考研數學證明題三大解題方法 縱觀近十年考研數學真題,大家會發(fā)現:幾乎每一年的試題中都會有一個證明題,而且基本上都是應用中值定理來解決問題的。但是要參加碩士入學數...
2024-10-25 02:19
【摘要】第一篇:初二數學幾何證明題 △ABC中,AB=AC,D在AB上,E在AC的延長線上,且BD=CE,線段DE交BC于點F,說明:DF=EF。 :在正方形ABCD中,M是AB的中點,E是AB延長線上的...
2024-10-27 18:20
【摘要】新課標立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-03-25 06:44
【摘要】必修二立體幾何經典證明試題1.如圖,三棱柱ABC-A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設知,∴=,即
2025-03-25 02:03
【摘要】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=DCCF.(1)求證:D是BC的中點;(2)如果AB=ACADCF的...
2024-10-21 22:41
【摘要】第一篇:初一幾何證明題 三角形 1、已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,FD平分∠ADC。求證:BE+CF>EF。 1、已知ΔABC,BD是AC邊上...
2024-10-24 20:15
【摘要】第一篇:幾何證明題專題講解 幾何證明題專題講解 【知識精讀】 ,它對培養(yǎng)學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常???..
2024-10-27 19:29
【摘要】第一篇:初一幾何證明題 初一《幾何》復習題2002--6—29姓名:一.填空題 1.過一點 2.過一點,有且只有直線與這條直線平行; 3.兩條直線相交的,它們的交點叫做;4.直線外一點與直線上...
2024-10-24 21:17