freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

畢業(yè)設(shè)計換熱器英文文獻翻譯中英對照(存儲版)

2025-01-10 18:00上一頁面

下一頁面
  

【正文】 coiled concentric tubeintube that the average heat transfer coef?cient of HFC134a during Ithas been found from the literature that there isasigni?cant increase inheat transfer rateusing nano?uids due totheir higher thermal conductivity pared to base ?uid [15,16]. Many * Corresponding author. Email address: (A. VenuVinod). researchers have experimentally investigated heat transfer 02552701/227。在所有的附圖中,在線圈側(cè)的流體的低流速(低級 Dean 數(shù))效率更高由于線圈側(cè)的流體的較高的出口溫度。C 參考 [1] M. Moawed, Experimental investigation ofnatural convection fromvertical andhorizontalhelicoidalpipesinHVACapplications,. 46 (2021) 2996–3013. [2] ,EnergysavinginHVACsystems using nano?uid, Appl. Therm. Eng. 31(2021)1543–1545. [3] , ,Numericalestimation ofmixed convection heat transfer invertical helically coiled tube heat exchangers, Int. Fluids 66 (2021)805–819. [4] ,Comparisonofheattransferrates betweenastraighttubeheatexchangerandahelicallycoiledheatexchanger, Int. Commun. Heat Mass Transfer 29 (2021) 185–191. [5] . Behabadi, , , Experimental investigation on the convective heat transfer ofnano?uid ?owinside vertical helically coiled tubes under uniform walltemperature condition, Int. Commun. Heat Mass Transfer 39(2021)556–564. [6] , M. Rakhsha, A. Abbassi, M. SaffarAvva,Experimental and numerical investigation ofnano?uidheattransfer inhelicallycoiledtubesat constant walltemperature usingdispersion model, 58 (2021)480–491. [7] ,MWCNT/waternano?uidorhelicalcoiling techniquewhichofthemismoreeffective?(36)(2021) 13183–13191. 0 1000 2021 Dean number 3000 4000 圖 .15. 殼側(cè)流體溫度對實驗的影響 )、 . (2% wt. CuO 納米顆粒 , 攪拌速度 =1500rpm). 攪拌器速度 1 1500 rpm 1000 rpm 500 rpm [8] ,Hydrodynamicallyandthermallydevelopinglaminar?owin spiral coil tubes, Int. herm. Sci. 77(2021)96–107. [9] H. Aminfar, M. Mohammad pourfard, , Numerical study of magic ?eld effects on the mixed convection of amagic nano?uid ina curved tube, Int. . Sci. 78(2021)81–90. [10] ,Evaporationheattransferandpressuredropof HFC134a inahelically coiled concentric tubeintube heat exchanger,Int. J. Heat Mass Transfer 49 (2021) 658–670. [11] , Thermal performance and pressure drop of the helicalcoil heat exchangerswithandwithouthelicallycrimped?ns,. HeatMass Transfer 34(2021) 321–330. [12] N. Ghorbani, H. Taherian, , H. Mirgolbabaei, Experimental study of mixed convection heat transfer invertical helically coiled tube heat exchangers, Exp. Therm. Fluid Sci. 34(2021)900–905. 0 1000 2021 3000 4000 Dean number [13] ,Thermochemical characteristics ofR134a?ow boiling inhelically coiled tubes atlowmass ?ux and low pressure, Thermochim. Acta 512(2021)163–169. [14] ,Experimentalstudyofforcedconvectionfromhelicalcoiledtubes with different parameters, Energy Convers. Manage. 52(2021)1150–1156. [15] . Heris, . Esfahany,. Etemad, Investigation of CuO/water nano?uid laminar convective heat transfer through acircular tube, . Heat Transfer 13(4) (2021) 279–289. 圖 .16. 攪拌速度對實驗的影響 . (2% wt. CuO 納米顆粒 殼側(cè)流體溫度 =50C). [16] . Heris, . Esfahany,. Etemad, Experimental investigation of convectiveheattransferofAl O /waternano?uidincirculartube, 2 3 Fluid Flow 28(2021) 203–210. [17] . Patel, . Das, , , , Thermal conductivities ofnaked and monolayer protected metal nanoparticle based nano?uids: manifestation ofanomalous enhancement and chemical effects, Appl. . 83(2021) 2931–2933. 5. 結(jié)論 [18] , , , Effectofstructural character ofgold nanoparticles innano?uid on heat pipe thermal performance, . 58 (2021) 1461–1465. [19] ,Heattransferenhancement innano?uids, 21(1) (2021) 58–64. 2 [20] ,StudyoftheenhancedthermalconductivityofFe nano?uids, . (6) (2021) 1–4. [21] H. Masuda, A. Ebata, K. Teramae, Alteration of thermal conductivity and viscosityofliquidbydispersing ultra?neparticles (Dispersion ofAl O ,SiO2 在 %的有效性,最高漲幅并觀察到 %為 CuO 和二氧化鈦的區(qū)別。對于給定的流體,有效性與減小增加冷流體的流動速率(線圈側(cè)流體的 Dean 數(shù)),雖然轉(zhuǎn)移( Q)的熱量更多(圖 511)。在研究中發(fā)現(xiàn)這三個納米流體,銅 /水納米流體的傳熱率最好。當在 濃度為 %的水 2%(重量)時可以觀察到有最大的增長。 熱傳輸速率( Q)用公式計算。從圖中可以觀察到,傳熱率隨著納米粒子濃度的增加電導率增加。熱交換器的有效性是由計算方程 數(shù)和雷諾數(shù) 4 , A. VenuVinod/化學工程與工藝 102(2021)1–8 納米流體 TiO2 Al2O3 CuO 不確定性分析通過在計算誤差進行在溫度測量和流速(公式( 6))。在穩(wěn)定狀態(tài)下,線圈側(cè)的流體的出口溫度(水)出。攪拌器接通和速度被設(shè)定在一個特定的值( 500, 1000 和 1500轉(zhuǎn))。通過線圈流動的水的速度用轉(zhuǎn)子流量計( LPM)進行測定。 [32]已經(jīng)調(diào)查了性能使用螺旋盤繞熱交換器的不同類型的納米流體(氧化銅 /水,氧化鋁 /水和 ZnO /水)。 Jamshidi 等。Kannadasan等。分散納米顆粒引入該基液,水。 文獻中已經(jīng)發(fā)現(xiàn)有一個具有較高增加熱傳遞速率導熱系數(shù)的水基流體 [15,16]。 Naphon[11]實驗調(diào)查螺旋盤管換熱的熱性能換熱器,是由十三為同心螺旋的盤管和非螺旋形卷組成。該活躍的技術(shù)需要外部力量,例如,電動場,表面振動等的無源技術(shù)需要流體的添加劑(例如,納米顆粒),或特殊的表面幾何形狀(例如,螺旋線圈)。(氧化鋁,氧化銅和二氧化鈦)。這些研究是在不同濃度的納米流體,以及納米流體的溫度,攪拌速度和線圈側(cè)的流體溢流率進行的。在傳統(tǒng)增強技術(shù)中廣泛使用的是內(nèi)部與外部彎管技術(shù),絞磁帶刀片,卷曲絲插入,螺旋彎管和流體添加劑。他報告說,冷水出口溫度,換熱器轉(zhuǎn)換率和平均傳熱速率與熱水質(zhì)量流率的增加而增加。許多研究人員經(jīng)行了傳熱連續(xù)溢流納米的殼側(cè)流體的實驗。氧化鋁, CuO 和 TiO 2納米顆粒的穩(wěn)定性在表 1列出納米流體增加了添加表面活性劑(十六烷基三甲基溴化銨( CTAB)的 1%重量的納米顆粒的)。 [28]實驗研究的效果在具有螺旋狀盤繞管熱交換器銅 /水納米流體動蕩,水平和垂直位置的條件下。 [30]具有實驗調(diào)查殼螺旋管熱性能通過改變線圈的直徑和節(jié)距熱交換器。他們的實驗結(jié)果表明,最大的增強傳遞系數(shù)為 4%(體積) %。的設(shè)立提供用數(shù)據(jù)采集系統(tǒng)來記錄 所有的溫度。 三 。 七。接著,不確定度進行了分析 [35]。在這三種納米流體,熱傳導率最高的是CuO/水。 ( 1)。這可以歸因于加入了能夠增強熱傳導的納米粒子。圖 9 和10 表示攪拌速度 的效果和 2%( 重量)的熱傳遞率殼側(cè)流體的溫度。這是因為減少冷流體出口溫度時,其流量增大。圖。 納米流 體導熱系數(shù)的增長與提高濃度和溫度相比較。該研究顯示傳熱激化可使用納米流體獲得。2021Elsevier . All rights reserved. Chemical Engineering and Processing: Process Intensi?cation journal homepage: Contents lists available at ScienceDirect Chemical Engineering and Processing 102(2021)1–8 2 , A. VenuVinod/Chemical Engineering and Processing 102(2021)1–8 continuous ?ow of nano?uid on the shellside. In the present Nomenclature study,therewasnocontinuous ?owofshellside ?uid(waterand subsequently nano?uid).Further,stirrerwasusedtopromoteheat transfer to coilside ?uid. Heat transfer intensi?cation was determined in terms of enhancement in heat transfer rate and effectiveness of hea
點擊復制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1