【摘要】曲線與方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能(1)了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;(2)初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思
2025-11-11 00:30
【摘要】2021年高中數(shù)學(xué)全套備課精選第二章圓錐曲線與方程章末總結(jié)(含解析)蘇教版選修1-1知識(shí)點(diǎn)一圓錐曲線的定義和性質(zhì)對(duì)于圓錐曲線的有關(guān)問題,要有運(yùn)用圓錐曲線定義解題的意識(shí),“回歸定義”是一種重要的解題策略;應(yīng)用圓錐曲線的性質(zhì)時(shí),要注意與數(shù)形結(jié)合思想、方程思想結(jié)合起來.總之,圓錐曲線的定義、性質(zhì)在解題中有重要作用,要注意靈活運(yùn)用.
2025-11-26 09:21
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)圓錐曲線復(fù)習(xí)課(2)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):1.掌握?qǐng)A錐曲線的共同性質(zhì);2.掌握橢圓、雙曲線、拋物線的幾何性質(zhì);3.會(huì)求一些簡(jiǎn)單的曲線的軌跡方程.教學(xué)重點(diǎn):圓錐曲線的共同性質(zhì)及曲線方程的求法.教學(xué)難點(diǎn):圓錐曲線的共同性質(zhì)及曲線方程
2025-11-10 21:26
【摘要】雙曲線的標(biāo)準(zhǔn)方程一、填空題1.3m5是方程x2m-5+y2m2-m-6=1表示的圖形為雙曲線的________條件.2.雙曲線ky2-8kx2+8=0的一個(gè)焦點(diǎn)為(0,3),則k=________.3.已知雙曲線x26-y23=1的焦點(diǎn)為F1、F2,點(diǎn)M在雙曲線上且M
2025-11-06 17:58
【摘要】求曲線的方程.一:直接法.例1、△ABC的頂點(diǎn)A固定,點(diǎn)A的對(duì)邊BC的長(zhǎng)是2a,邊BC上高的長(zhǎng)是b,邊BC沿一定直線移動(dòng),求△ABC外心的軌跡方程。1、設(shè)A,B兩點(diǎn)的坐標(biāo)分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習(xí)40頁第2題求曲線的方程.
2025-11-08 15:21
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測(cè)蘇教版選修2-1一、填空題1.(2021·南京高二檢測(cè))雙曲線x25-y24=1的焦點(diǎn)坐標(biāo)是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
2025-11-26 09:29
【摘要】第2章圓錐曲線與方程(A)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.已知橢圓的離心率為12,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為______________.2.當(dāng)a為任意實(shí)數(shù)時(shí),直線(2a+3)x+y-4a+2=0恒過定點(diǎn)P,則過點(diǎn)P的拋物
【摘要】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個(gè)方面:一是曲線上點(diǎn)的坐標(biāo)都是方程的解———稱為純粹性;二是以方程的解為坐標(biāo)的點(diǎn)都在曲線上———稱為完備性.兩者缺一不可,否則就容易導(dǎo)致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個(gè)點(diǎn)B.一個(gè)圓
2025-11-11 00:26
【摘要】第2章圓錐曲線與方程(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.以x軸為對(duì)稱軸,拋物線通徑長(zhǎng)為8,頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線的方程為__________.2.雙曲線9x2-4y2=-36的漸近線方程是____________________________.
【摘要】圓錐曲線教學(xué)過程設(shè)計(jì)1.問題情境我們知道,用一個(gè)平面截一個(gè)圓錐面,當(dāng)平面經(jīng)過圓錐面的頂點(diǎn)時(shí),可得到兩條相交直線,當(dāng)平面與圓錐面的軸垂直時(shí),截得的圖形是一個(gè)圓,試改變平面的位置,觀察截得的圖形的變化情況。提出問題:用平面去截圓錐面能得到哪些曲線?2.學(xué)生活動(dòng)學(xué)生討論上述問題,通過觀察,可以得到以下三種不同的曲線:
2025-11-29 21:22
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第2課時(shí)曲線上一點(diǎn)處的切線教學(xué)目標(biāo):;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學(xué)重點(diǎn):理解曲線在一點(diǎn)處的切線的定義,以及曲線在一點(diǎn)處的切線的斜率的定義,掌握曲線在一點(diǎn)處切線斜率及切線方程的求法教學(xué)難點(diǎn):理解曲線在一點(diǎn)處的
2025-11-10 17:30
【摘要】,第二章圓錐曲線與方程,2.4拋物線2.4.1拋物線及其標(biāo)準(zhǔn)方程,第一頁,編輯于星期六:點(diǎn)三十三分。,第二頁,編輯于星期六:點(diǎn)三十三分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點(diǎn)三十三分。...
2025-10-13 18:46
【摘要】圓錐曲線的統(tǒng)一定義江蘇省運(yùn)河中學(xué)高二備課組2、雙曲線的定義:平面內(nèi)到兩定點(diǎn)F1、F2距離之差的絕對(duì)值等于常數(shù)2a(2a|F1F2|)的點(diǎn)的軌跡表達(dá)式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點(diǎn)F的距離和到定直線的距離相等的點(diǎn)的軌跡表達(dá)式|PF|=
2025-11-08 23:32
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)圓錐曲線教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.通過用平面截圓錐面,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學(xué)符號(hào)或自然語言描述.2.通過用平面截圓錐面,感受、了解雙曲線的定義,能用數(shù)學(xué)符號(hào)或自然語言描述雙曲線的定義.教學(xué)重點(diǎn):橢圓、拋物線、雙曲線的定義.教學(xué)難點(diǎn):用數(shù)
2025-11-25 18:02
【摘要】橢圓圖圖象和定義課堂練習(xí)雙曲線的圖象和定義拋物線的圖象和定義橢圓的定義平面內(nèi)到兩定點(diǎn)F1,F(xiàn)2的距離之和為常數(shù)(大于F1F2距離)的點(diǎn)的軌跡叫橢圓,兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距雙曲線的定義平面內(nèi)到兩定點(diǎn)F1F2
2025-11-09 08:46