freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

豐都實(shí)驗(yàn)中學(xué)“高中數(shù)學(xué)深度學(xué)習(xí)研究”魅力圖象小專題設(shè)計(jì)案例(存儲(chǔ)版)

  

【正文】 , x∈ [0,2π ] (2)y=2cos(xπ /6),x∈ [0,π ] (3)y=|sinx| (4)y=sin|x| 2、判斷方程 sinx=lgx解的個(gè)數(shù) . 討論 5 :學(xué)生動(dòng)手作圖,展示作圖成果,學(xué)生分組討論,教師引導(dǎo)糾錯(cuò)。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng)2 : 教師引 導(dǎo)學(xué)生 觀察正余弦函數(shù)在 R內(nèi)的圖象 , 得出正 余弦 函數(shù)的定義域、值域 。 能 判斷 函數(shù)的 奇偶性。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活 動(dòng)3 : 引導(dǎo)學(xué)生觀察正弦函數(shù) y=sinx和余弦函數(shù) y=cosx的圖象,得出正余弦函數(shù)的奇偶性。 會(huì)求函數(shù) y=Asin(ω x+φ )+k 的單調(diào)區(qū)間。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng)3 : 求 y=Asin(ω x+φ )+k的單調(diào)區(qū)間 問(wèn)題3 : (1)求 y=2sin(3x+π /4)1的遞減區(qū)間。 問(wèn)題1 : 如何得到正切函數(shù)在整個(gè)定義域內(nèi) 的圖象 ? 討論1 : 學(xué)生 分組討論,教師引導(dǎo) 。 (3)求函數(shù) y= 2tan(π /4- 3x)+ 1的定義域、值域、周期、單調(diào)區(qū)間和對(duì)稱中心。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng)2 : 探究“振幅變換”: 在同一坐標(biāo)系內(nèi)作出函數(shù) y=sinx, y=2sinx, y=(sinx)/2 的圖象。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 6:方法清理 問(wèn)題 6: (1)函數(shù) y=sinx的圖象 ,經(jīng)過(guò)怎樣的變換可得函數(shù) y=Asinx的圖象? (2)函數(shù) y=sinx的圖象 ,經(jīng)過(guò)怎樣的變換可得函數(shù) y=sinω x的圖象 ? (3)函數(shù) y=sinx的圖象 ,經(jīng)過(guò)怎樣的變換可得 y=sin(x+φ )的圖象? (4)函數(shù) y=sinx的圖象 ,經(jīng)過(guò)怎樣的變換可得函數(shù) y=sinx+k的圖象 ? 討論 6:學(xué)生回答,教師指正。 (2) 將函數(shù) y=3sin2x的圖象向右平移π /6個(gè)單位,所得圖象的函數(shù)解析式是 。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 6:課外練習(xí) 反饋 6:教師批 閱 教師點(diǎn)評(píng) xyO 1321?213。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng)2 : 探究 y=Asin(ω x+φ )+k圖象 變換 問(wèn)題2 : (1)怎樣由 y=sinx的圖象畫(huà)出函數(shù) y=3sin(2x+π /6)1的圖象? (2)怎樣由 y=sinx的圖象得出函數(shù) y=Asin(ω x+φ )+k的圖象? 討論2 : 學(xué)生 回 答 、分組討論、 教師引導(dǎo) 。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 5: 探究“上下平移變換”: 在同一坐標(biāo)系內(nèi)作出函數(shù) y=sinx, y=sinx+1, y=sinx1的圖象。 問(wèn)題1 : 函數(shù) y=Asin(ω x+φ )(A0,ω 0)的振幅是 ,周期是 ,頻率是 ,相位是 ,初相是 。 tan226176。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 5 :課外練習(xí) 反饋5 :教師批閱 教師點(diǎn)評(píng) 第 6 課時(shí) 設(shè)計(jì)教師 彭益林 學(xué)習(xí)主題 正切 函數(shù)的 圖象和 性質(zhì) 學(xué)習(xí)目標(biāo) 能 由 正切 函數(shù) 圖 象得出正切函數(shù)的性質(zhì) ,培養(yǎng) 觀察 能力 和類比研究能力 。與 cos160176。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 4 :方法清理 問(wèn)題 4 : (1)如何求函數(shù) y=Asin(ω x+φ )+k的 周期? (2)如何求函數(shù) y=Asin(ω x+φ )+k的對(duì)稱中心和對(duì)稱軸 ? (3)如何 判斷函數(shù) 的 奇偶性 ? 討論 4 :學(xué)生回答,教師指正。 討論1 : 學(xué)生 動(dòng)手作 正余弦函數(shù)的 圖 象 , 分組討論, 展示結(jié)果, 教師引導(dǎo) 。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng) 6 :方法清理 問(wèn)題 6 : (1)求函數(shù)定義域的關(guān)鍵是什么 ? (2)求函數(shù)值域的關(guān)鍵是什么? 討論 6 :學(xué)生回答,教師指正。 問(wèn)題1 :如何得到正 余弦函數(shù)在 定義域 R內(nèi)的圖象 ? 并畫(huà)出在 R內(nèi)的簡(jiǎn)圖。 學(xué)生動(dòng)手作圖,展示作圖成果。 培養(yǎng)學(xué)生的動(dòng)手操作能力 和類比研究能力 。 現(xiàn)場(chǎng)評(píng)價(jià) 學(xué)生自評(píng) 學(xué)生互評(píng) 教師點(diǎn)評(píng) 活動(dòng)3 :學(xué)生動(dòng)手,用直尺圓規(guī)作出正弦函數(shù)在 [0, 2π ]上 的圖象 。 能通過(guò)反思,大體知道自己的優(yōu)勢(shì)與不足,并能大致分析造成這些的原因。 操作熟練,但關(guān)系一般?;顒?dòng)認(rèn)真。 基本能理解并通過(guò)活動(dòng)解決提出的問(wèn)題。 五、 課堂 教學(xué)持續(xù)性評(píng)價(jià)設(shè)計(jì) 設(shè)計(jì)教師 陳黎明 評(píng)價(jià)指標(biāo) 好 [10, 8] 一般 ( 8, 6] 需要改進(jìn) (6,0] 生 評(píng) 師 評(píng) 基礎(chǔ)知識(shí) 掌握情況 ( 10分) 能很好的理解并解決提出的問(wèn)題。 四、課時(shí)規(guī)劃: 共 8課時(shí) 第1課時(shí): 用“單位圓法”作出正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖象。 (二) 過(guò)程與方法 目標(biāo) : 9 、體會(huì)
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1