【摘要】勾股定理的逆定理1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個(gè)三角形是否直角三角形.一、學(xué)習(xí)目標(biāo)本節(jié)的重點(diǎn)是:勾股定理的逆定理.本節(jié)的難點(diǎn)是:用勾股定理的逆定理判斷一個(gè)三角形是否直角
2025-08-04 14:08
【摘要】勾股定理的逆定理你知道嗎?據(jù)說古埃及人用下圖所示的方法畫直角:把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié)、4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)你知道
2025-08-16 01:15
【摘要】【鞏固練習(xí)】1.(2015?畢節(jié)市)下列各組數(shù)據(jù)中的三個(gè)數(shù)作為三角形的邊長(zhǎng),其中能構(gòu)成直角三角形的是( ?。〢.,, B.1,, C.6,7,8 D.2,3,4()A.全等三角形的對(duì)應(yīng)角相等B.如果兩個(gè)數(shù)相等,那么它們的絕對(duì)值相等C.兩直線平行,同位角相等°,那么這兩個(gè)角相等.().A.
2025-06-16 07:18
【摘要】興福中學(xué)初二數(shù)學(xué)下冊(cè)周末作業(yè)(日期:—)1.分別以下列四組數(shù)為一個(gè)三角形的邊長(zhǎng):(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能構(gòu)成直角三角形的有()2.三角形的三邊長(zhǎng)分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是()A.直角三角形B.鈍角三角形C.銳角三角形
2025-03-24 13:00
【摘要】勾股定理的逆定的逆定理的探究方法.二、過程與方法1.用三邊的數(shù)量關(guān)系來判斷一個(gè)三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想.2.通過對(duì)Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神.三、情感態(tài)度與價(jià)值觀1.通過介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問題的愿望.2.通過對(duì)勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神.教學(xué)重點(diǎn)探究勾股定理的逆定理,理解互逆命題,
2025-04-16 23:55
【摘要】THANKS
2025-03-12 15:34
【摘要】2020年4月10日第7周星期第節(jié)1教學(xué)內(nèi)容:本節(jié)課主要學(xué)習(xí)勾股逆定理以及應(yīng)用.課時(shí):2教學(xué)目標(biāo):探索幵掌握直角三角形判別思想,會(huì)應(yīng)用勾股逆定理解決實(shí)際問題.經(jīng)歷直角三角形判
2024-11-21 01:10
【摘要】勾股定理的逆定理第1課時(shí)勾股定理的逆定理滬科版·八年級(jí)數(shù)學(xué)下冊(cè)狀元成才路狀元成才路新課導(dǎo)入勾股定理如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.提問如果將條件和結(jié)論反過來,這個(gè)命題還成立嗎?狀元成才路
2025-03-13 03:09
【摘要】《勾股定理逆定理》測(cè)試題 班別:姓名: 一、選擇題(每小題5分,共25分) 1.在下列長(zhǎng)度的各組線段中,能組成直角三角形的是(). A.12,15,17B.9,16,25C.5a,12a,13...
2025-04-01 23:30
【摘要】勾股定理及其逆定理專題復(fù)習(xí),5,x為邊組成直角三角形,則x應(yīng)滿足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長(zhǎng)是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( ?。〢、2∶
2025-04-16 23:53
【摘要】第1章直角三角形直角三角形的性質(zhì)和判定(Ⅱ)第3課時(shí)學(xué)習(xí)目標(biāo).(重點(diǎn)),能利用勾股定理的逆定理判斷一個(gè)三角形是直角三角形.(難點(diǎn)).(難點(diǎn))BCA問題1勾股定理的內(nèi)容是什么?如果直角三角形的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b
2024-12-28 01:12
【摘要】一、復(fù)習(xí)回顧基礎(chǔ)知識(shí)鞏固練習(xí);1、等邊三角形的高為2,則它的面積是 。2、直角三角形兩直角邊分別為6cm和8cm,則斜邊上的中線長(zhǎng)為 。A 3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,EBC=8c
【摘要】18.2勾股定理的逆定理(2)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】:1.利用勾股定理的逆定理解決方位角等實(shí)際應(yīng)用題。2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)重難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。學(xué)法指導(dǎo):5分鐘閱讀75頁(yè)例2,在針對(duì)預(yù)習(xí)案二次閱讀75頁(yè)例題2,解答預(yù)習(xí)案中的問題,疑惑時(shí)記錄在我的疑惑欄內(nèi),準(zhǔn)備
2024-11-21 05:35
【摘要】17.2勾股定理的逆定理一、教學(xué)目的1.體會(huì)勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2.探究勾股定理的逆定理的證明方法。3.理解原命題、逆命題、逆定理的概念及關(guān)系。二、重點(diǎn)、難點(diǎn)1.重點(diǎn):掌握勾股定理的逆定理及證明。2.難點(diǎn):勾股定理的逆定理的證明。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生了解命題,逆命題,
2024-12-08 19:08
【摘要】勾股定理及其逆定理的應(yīng)用常見題型利用勾股定理求線段長(zhǎng)1.如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊的中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF的長(zhǎng).(注:直角三角形斜邊上的中線等于斜邊的一半)利用勾股定理求面積2.如圖,長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,設(shè)點(diǎn)D落在D′處,BC交AD′于點(diǎn)
2025-03-24 12:59