【摘要】第二章函數(shù)與基本初等函數(shù)第二章第四節(jié)二次函數(shù)與冪函數(shù)高考目標導航課前自主導學課堂典例講練3課后強化作業(yè)4高考目標導航考綱要求1.理解并掌握二次函數(shù)的定義、圖像及性質.2.會求二次函數(shù)在閉區(qū)間上的最值.3.能用二次函數(shù)、一元二次方程及一元二次不等式之間的聯(lián)系去解決有關問題.
2024-11-19 04:09
【摘要】課題二次函數(shù)的圖像和性質教學內容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【摘要】二次函數(shù)的圖象和性質1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認為其中錯誤的有()yxO(第4題)A.2個 B.3個 C.4個 D.1個第1題(-1,2)和點N(
2025-03-24 06:26
【摘要】二次函數(shù)圖象專題訓練1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論①a、b異號;②當x=1和x=3時,函數(shù)值相等;③4a+b=0,④當y=4時,x的取值只能為0.結論正確的個數(shù)有()個A.1 ?。拢? ?。茫? ?。模?yxO2、已知二次函數(shù)()的圖象如圖所示,有下列結論:①;②;③;④.其中,正
2025-06-23 13:54
【摘要】二次函數(shù)的圖像與性質一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。【說明】這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1
2025-04-04 04:24
【摘要】二次函數(shù)的圖像與性質專題練習 1.()如圖是二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=mx+n(m≠0)的圖象,當y2>y1,x的取值范圍是 _________?。?.(2011?揚州)如圖,已知函數(shù)y=與y=ax2+bx(a>0,b>0)的圖象交于點P.點P的縱坐標為1.則關于x的方程ax2+bx+=0的解為 _________?。?/span>
【摘要】二次函數(shù)的圖像與性質專項練習【知識要點】1.二次函數(shù):形如的函數(shù)叫做二次函數(shù).2.二次函數(shù)的圖像性質:(1)二次函數(shù)的圖像是;(2)二次函數(shù)通過配方可得為常數(shù)),其頂點坐標為。(3)當時,拋物線開口,并向上無限延伸;在對稱軸左側時,y隨x的增大而減小;在對稱軸右側
【摘要】二次函數(shù)的性質=ax2(a≠0)的圖象二次函數(shù)y=ax2(a≠0)的圖象可由y=x2的圖象各點的縱坐標變?yōu)樵瓉淼谋兜玫剑渲衋決定了圖象的和在同一直角坐標系中的.=a(x+h)2+k(a≠0)的圖象一般地,二次函數(shù)y=a(x+h)2+k(a
2025-11-09 13:32
【摘要】4.2二次函數(shù)的性質學習導航學習目標重點難點重點:利用配方法研究y=ax2+bx+c的性質.難點:求二次函數(shù)在給定區(qū)間上的最大值、最小值.新知初探·思維啟動二次函數(shù)的性質二次函數(shù)y=ax2+bx+c(a≠0)的性質如下表:a的符號
2025-10-31 02:28
【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(2)在同一坐標系中畫出下列函數(shù)的圖象:222)1(3;23;3?????xyxyxyoyx23xy?函數(shù)的圖象函數(shù)的圖象232??xy函數(shù)
2024-11-22 04:09
【摘要】反比例函數(shù)1、反比例函數(shù)圖象:反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線??反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。2、性質:0時,圖象分別位于第一、三象限,同一個象限內,y隨x的增大而減小;當k0
2025-05-16 02:18
【摘要】第二節(jié)二次函數(shù)的圖像與性質1.能夠利用描點法做出函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k和圖象,能根據(jù)圖象認識和理解二次函數(shù)的性質;2.理解二次函數(shù)中a、b、c對函數(shù)圖象的影響。一、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標,然后在對稱軸兩側,:頂點、與軸的交點、以及關于對稱軸對稱的點、與
2025-06-23 13:56
【摘要】二次函數(shù)的圖像和性質練習題一、選擇題1.下列函數(shù)是二次函數(shù)的有()(6)y=2(x+3)2-2x2 A、1個;B、2個;C、3個;D、4個,,的圖像,下列說法中不正確的是()A.頂點相同B.對稱軸相同C.圖像形狀相同D.最低點相同3.拋物線的頂點坐標是( )A.(2,1) B.(-2,1) C.(
【摘要】第1課時二次函數(shù)一、閱讀教科書二、學習目標:1.知道二次函數(shù)的一般表達式;2.會利用二次函數(shù)的概念分析解題;3.列二次函數(shù)表達式解實際問題.三、知識點:一般地,形如____________________________的函數(shù),叫做二次函數(shù)。其中x是________,a是__________,b是___________,c是_____________.四
2025-04-16 13:04
【摘要】二次函數(shù)的圖像與性質復習考點3、二次函數(shù)的圖像與性質基礎知識復習考點2,、解析式:(1)一般式:y=ax2+bx+c(a≠0);(2)頂點式:y=a(x–m)2+n,頂點為(m,n);(3)交點式:y=a(x–x1)(x-x2),與x軸兩交點是(x1,
2025-11-03 00:08