【摘要】第一篇:全等三角形基礎證明題 全等三角形——基礎證明 “如果??”“那么??”的形式,指出它的題設和結(jié)論,并寫出他們的逆命題.(1)同位角相等,兩直線平行; 解:如果______________...
2025-10-16 05:24
【摘要】第一篇:證明三角形全等專項練習試題 證明三角形全等專項練習試題 一、全等三角形 :能夠完全重合的兩個三角形叫做全等三角形。 理解:①全等三角形形狀與大小完全相等,與位置無關;②一個三角形經(jīng)過平...
2025-10-16 12:09
【摘要】作業(yè)布置評價小結(jié)鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
【摘要】......全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,兩個角之間的相等。1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點……作……
2025-03-24 07:39
【摘要】全等三角形的判定證明題訓練考點提煉整理1、認識全等圖形中的對應關系,理解全等概念。全等三角形:能夠完全重合的兩個三角形稱為全等三角形全等符號:“≌”,讀作“全等于”2、掌握全等三角形的性質(zhì):①全等三角形的對應邊相等。②全等三角形的對應角相等。3、理解全等三角形的三個判定公理和一個判定定理。①角邊角公理:有兩角和它們的夾邊對應相等的兩個三角形全等(ASA)。
2025-03-24 07:40
【摘要】第1頁共3頁初中數(shù)學全等三角形常見題型訓練基礎測試卷一、單選題(共4道,每道25分),在AB、AC上各取一點D、E,使得AE=AD,連接CD、BE相交于點O,再連接AO.若∠CAO=∠BAO,則圖中全等三角形共有()對對對對,已知點E
2025-08-11 13:27
【摘要】.,....全等三角形是初中階段數(shù)學學習的重點,也是難點,主要有以下幾種類型一.A字型AEDCB,點D在AB上,點E在AC上,AB=AC,∠B=∠C,求證:AD=AE,證明:在△ABE與△ACD中
2025-05-16 04:35
【摘要】《全等三角形(第一課時)》說課稿1、教材簡介:義務教育課程標準實驗教科書魯教版五四學制初中數(shù)學七年級下冊第十章第一節(jié)《全等三角形》第一課時。2、教學目標:1、課程標準的要求:本節(jié)課是關于全等三角形的證明的相關知識,需要從全等三角形的三個基本事實出發(fā),利用它們的結(jié)論進行一些相關的幾何結(jié)論。通過本節(jié)課的學習,要使學生能夠掌握證明的基本步驟和書寫格式,能靈活地運用三個
2025-04-16 23:10
【摘要】全等三角形1已知:如圖,四邊形ABCD中,AC平分DBAD,CE^AB于E,且DB+DD=180°,求證:AE=AD+BE2如圖17所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接AD、BC交于點P,連接OP,則下列結(jié)論正確的是()①△APC
2025-03-24 07:41
【摘要】全等三角形復習1、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形性質(zhì):(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。3、全等三角形的判定:邊邊邊:三邊對應相等的兩個三角形全等(“SSS”)
2025-06-07 15:45
【摘要】第十九章全等三角形命題與定理第一課時教學內(nèi)容:命題教學目標:了解命題、定義的含義;對命題的概念有正確的理解。會區(qū)分命題的題設和結(jié)論。知道判斷一個命題是假命題的方法。教學重點:找出命題的題設和結(jié)論。教學難點:命題概念的理解。教學過程:一、復習引入:我們已經(jīng)學過一些圖形
【摘要】年級八年級課題全等三角形課型新授教學媒體多媒體教學目標知識技能1.了解全等形和全等三角形的概念.2.能夠找出全等三角形的對應元素.3.掌握全等三角形的對應邊、角相等.過程方法在圖形變換以及實際操作的過程中發(fā)展學生的空間觀念,培養(yǎng)學生
2024-11-24 21:41
【摘要】......2017年初中數(shù)學試卷一、綜合題(共32題;共413分)1、如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個
2025-06-24 20:56
【摘要】全等三角形的經(jīng)典證明題(一)1.已知:如圖,點B,E,C,F在同一直線上,AB∥DE,且AB=DE,BE=:AC∥DF.2.如圖,已知:AD是BC上的中線,且DF=DE.求證:BE∥CF.3.如圖,已知AB=DE,BC=EF,AF=DC。求證:∠EFD=∠BCA,已知在△ABC中,F(xiàn)為AC中點,E為AB上一點,D為EF延長線上
2025-04-08 12:26