【摘要】任意角考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難任意角的概念及推廣39象限角的判定1、2、4終邊相同的角及應(yīng)用57、10區(qū)間角的表示6、11確定角所在的象限8121.下列各角中,與60°角終邊相同的角是()A.-300°
2024-12-05 06:49
【摘要】《向量的加法運(yùn)算及其幾何意義》教案教學(xué)目標(biāo):1、掌握向量的加法運(yùn)算,并理解其幾何意義;2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;3、通過將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類比的數(shù)學(xué)方法;教學(xué)重點(diǎn):會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的
2025-08-04 23:07
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】平面向量數(shù)量積的物理背景及其含義考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量的數(shù)量積的基本運(yùn)算3、5向量的夾角與垂直問題1、2、68、1112向量的模47、9、101.若a·b<0,則a與b的夾角θ的取值范圍是()A.??????0,π2
2024-12-05 06:47
【摘要】來源教學(xué)內(nèi)容:§教學(xué)目標(biāo)1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長(zhǎng)度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會(huì)根據(jù)圖形判定是否平行、共線、相
2024-12-08 16:21
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會(huì)用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
2024-11-20 01:05
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算班級(jí):__________姓名:__________設(shè)計(jì)人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語(yǔ)】你的天賦好比一朵火花,假如你用勤勉辛勞去助燃,它一定會(huì)變成熊熊烈火,放出無比的光和熱來?!緦W(xué)習(xí)目標(biāo)】1.理解對(duì)數(shù)的概念,掌握常用對(duì)數(shù)及自然對(duì)數(shù).2.熟記并能夠運(yùn)
【摘要】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡(jiǎn)12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
2024-12-08 01:49
【摘要】2.2向量的線性運(yùn)算2.向量的加法情景:請(qǐng)看如下問題:(1)如圖(1),某人從A到B,再?gòu)腂按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-05 10:16
【摘要】復(fù)數(shù)的幾何意義2020年12月24日實(shí)部復(fù)數(shù)通常用字母z表示,即biaz??),(RbRa??虛部其中稱為虛數(shù)單位。i復(fù)數(shù)a+bi??????????????000000bababb,非純虛數(shù),純虛數(shù)虛數(shù)實(shí)數(shù)
2024-11-17 05:48
【摘要】:)(00xxkyy???0已知函數(shù)y=f(x)在點(diǎn)x=x及其附近有定義00?叫做函數(shù)y=f(x)在x到x+x之間的平均變化率.00()()x0,fxxfxyxx?????????當(dāng)時(shí)比值'000)()()lim
2024-11-17 05:49
【摘要】 第2課時(shí) 向量減法運(yùn)算及其幾何意義 與a長(zhǎng)度相等,方向相反的向量,叫作a的相反向量,記作-a. (1)零向量的相反向量仍是零向量,即-0=0. (2)任一向量與其相反向量的和...
2025-04-03 03:50
【摘要】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)向量的加法課后訓(xùn)練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個(gè)數(shù)為().A.2B.3C.
2024-12-03 03:14
【摘要】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個(gè)共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【摘要】關(guān)于《平面向量基本定理》的課后反思當(dāng)前,新課程的改革與素質(zhì)教育工作已全面展開,它對(duì)教育、教學(xué)不斷提出更新、更高的要求,而課堂教學(xué)是教育教學(xué)的主陣地,那種以老師講解為主,使學(xué)生常常處于消極、被動(dòng)、受壓抑的狀態(tài),既不能充分地調(diào)動(dòng)學(xué)生的主動(dòng)性、積極性,又不能很好地培養(yǎng)學(xué)生的各方面能力的傳統(tǒng)灌輸教學(xué)法與新課程的改革理念及“以學(xué)生為本”的教學(xué)思想已是格格不入。所以課堂教學(xué)