【正文】
hematical inequality proof methods. Inequality in elementary mathematical proof monly use in parative law, for mercial, analysis, synthesis, mathematical induction, the reduce tion to absurdity, discriminant, function, Geometry, and so on. Inequality in higher mathematics proof often use the intermediate value theorem, Taylor formula, the Lagranga function and some famous inequality, such as : mean inequality, Kensen inequality, Johnson in equality, Helder inequality, and so on. Inequality proof methods get more efficient and help us further explore and study the inequality proof. Through the study of these proof methods, we can solve some practical problems, develop logical reasoning ability and demonstrated the ability to abstract thinking and grow hard thinking and good at thinking of the good study habit.Key words inequality。 parative law。 題目*****************(宋體5號,單倍行距,居中)表格標(biāo)題(黑體5號,單倍行距)表格內(nèi)容(宋體5號,單倍行距)注:表格最好采用三線表格。2 實驗結(jié)果(黑體,小三,頂格) 橙黃G溶液的動力學(xué)研究(二級標(biāo)題,黑體,小四,頂格)在實驗過程中,探索得到實驗最佳反應(yīng)條件為pH=, Sn(IV) (.%), 催化劑10g/l, H2O2=,固定最佳反應(yīng)條件,配制初始濃度分別為10mg/l、20 mg/l、30 mg/l、40 mg/l、50 mg/l、60 mg/l的溶液加入到反應(yīng)體系中,以考察橙黃G光催化降解的動力學(xué)。要求注釋或參考文獻(xiàn)與文內(nèi)編號一一對應(yīng)。 (3)說明:①文獻(xiàn)類型標(biāo)識方法為:專著[M],論文集[C],報紙文章[N],期刊文章[J],學(xué)位論文[D], 報告[R],標(biāo)準(zhǔn)[S],專利[P]。③對于英文文獻(xiàn),三個及以下作者的,與注②要求一樣;三個以上作者的,要在第三個作者后加“et al”?!北硎敬私Y(jié)果援引自文獻(xiàn)14。表觀反應(yīng)速率常數(shù)k遠(yuǎn)大于表面吸附平衡常數(shù)KA,這說明在該光催化氧化過程中,雖然參加反應(yīng)的橙黃G要經(jīng)過擴(kuò)散、吸附、表面反應(yīng)等步驟,但是吸附為該反應(yīng)的速控步。(宋體5號,單倍行距)此外,表格應(yīng)寫在離正文首次出現(xiàn)處的近處,不應(yīng)過分超前或拖后。 function 目 錄摘要……………………………………………………………………………………………ⅠAbstract………………………………………………………………………………………Ⅱ前言……………………………………………………………………………………………11 常用方法……………………………………………………………………………………11.1比較法(作差法)………………………………………………………………………1 1.2作商法 ………………………………………………………………………………1 1.3分析法(逆推法)………………………………………………………………………1 1.4綜合法…………………………………………………………………………………2 1.5反證法…………………………………………………………………………………2 1.6迭合法…………………………………………………………………………………2 1.7放縮法…………………………………………………………………………………3 1.8數(shù)學(xué)歸納法……………………………………………………………………………3 1.9換元法…………………………………………………………………………………3 1.10三角代換法…………………………………………………………………………4 1.11判別式法……………………………………………………………………………41.12標(biāo)準(zhǔn)化法……………………………………………………………………………41.13等式法………………………………………………………………………………5 1.14分解法………………………………………………………………………………6 1.15構(gòu)造法………………………………………………………………………………61.16排序法………………………………………………………………………………61.17借助幾何法…………………………………………………………………………72 利用函數(shù)證明不等式………………………………………………………………………