【摘要】《線性代數(shù)》同步練習(xí)冊班級姓名學(xué)號1第一章矩陣§矩陣的概念與運(yùn)算:361622411?????????
2025-01-09 10:36
【摘要】1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:
2025-05-16 07:31
【摘要】線性代數(shù)公式1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時(shí)針或逆時(shí)針旋轉(zhuǎn),所得行列式
2025-07-24 13:45
【摘要】數(shù)量矩陣是對角矩陣的一種!A-B相似,不管是不是實(shí)對稱矩陣一定是特征值一樣的?。ǚ粗繘]有實(shí)對稱這個(gè)前提對嗎?對比書上195頁例14)實(shí)對稱的更是的!而正負(fù)慣性指數(shù)前提是二次型函數(shù)的,所以一定要實(shí)對稱矩陣的!標(biāo)準(zhǔn)型不定,可以有很多種,但是不管化成哪種,慣性指數(shù)是一定的,一樣的!因此判斷兩個(gè)二次型能否相互化成關(guān)鍵是看慣性指數(shù)是否一樣!這個(gè)定理為什么成立?而慣性指數(shù)等同(相等)于一
2025-03-23 12:03
【摘要】第一章行列式1.為何要學(xué)習(xí)《線性代數(shù)》?學(xué)習(xí)《線性代數(shù)》的重要性和意義。答:《線性代數(shù)》是理、工、醫(yī)各專業(yè)的基礎(chǔ)課程,它是初等代數(shù)理論的繼續(xù)和發(fā)展,它的理論和方法在各個(gè)學(xué)科中得到了廣泛的應(yīng)用。2.《線性代數(shù)》的前導(dǎo)課程。答:初等代數(shù)。3.《線性代數(shù)》的后繼課程。答:高等代數(shù),線性規(guī)劃,運(yùn)籌學(xué),經(jīng)濟(jì)學(xué)等。4.如何學(xué)習(xí)《線性代數(shù)》?答:掌握各章節(jié)的基
【摘要】第1頁共27頁《線性代數(shù)(經(jīng)濟(jì)數(shù)學(xué)2)》課程習(xí)題集西南科技大學(xué)成人、網(wǎng)絡(luò)教育學(xué)院版權(quán)所有習(xí)題【說明】:本課程《線性代數(shù)(經(jīng)濟(jì)數(shù)學(xué)2)》(編號為01007)共有計(jì)算題1,計(jì)算題2,計(jì)算題3,計(jì)算題4,計(jì)算題5等多種試題類型,其中,本習(xí)題集中有[計(jì)算題5]等試題類型未進(jìn)入。
2025-01-09 02:10
【摘要】《線性代數(shù)》公選課復(fù)習(xí)題一、填空題1.行列式第二列元素的代數(shù)余子式分別是 , , ?。玻常阎仃嚕瑒t= ?。矗O(shè),則 .5.已知,則 .6.已知矩陣,若齊次方程組存在非零解,則 ?。罚 。福簦怠粒淳仃嘇的每一行元素之和等于零,且,則方程組AX=0的一個(gè)基礎(chǔ)解系為 ?。梗绻驱R次線
2025-08-04 13:07
【摘要】第六章二次型1.設(shè)方陣與合同,與合同,證明與合同.證:因?yàn)榕c合同,所以存在可逆矩,使,因?yàn)榕c合同,所以存在可逆矩,使.令,則可逆,于是有即與合同.2.設(shè)對稱,與合同,則對稱證:由對稱,故.因與合同,所以存在可逆矩陣,使,于是即為對稱矩陣.3.設(shè)A是n階正定矩陣,B為n階實(shí)對稱矩陣,
2025-06-28 22:10
【摘要】第一篇:線性代數(shù)試題三 線性代數(shù)B第三套練習(xí)題及答案 一、單項(xiàng)選擇題(本大題共10小題,每小題2分,共20分) 在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請將其代碼填寫在題后的括號內(nèi)。...
2024-10-15 12:34
【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2024-10-04 19:42
【摘要】第二章矩陣及其運(yùn)算?矩陣的概念?矩陣的運(yùn)算?逆矩陣?矩陣分塊法第一節(jié)線性方程組和矩陣?矩陣概念的引入(線性方程組)?矩陣的定義?小結(jié)、思考題???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa
2025-08-05 10:13
【摘要】線性代數(shù)復(fù)習(xí).課程重點(diǎn):解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對角化(6)二次型nn???解個(gè)方程個(gè)未知量的線性方程組mn???解個(gè)方程個(gè)未知量的線性方程組解線性方程組判斷線性方程
2025-02-19 06:24
【摘要】數(shù)學(xué)分析、高等代數(shù)、解析幾何、中學(xué)數(shù)學(xué)建模、離散數(shù)學(xué)、高等幾何、概率統(tǒng)計(jì)、競賽數(shù)學(xué)、運(yùn)籌學(xué)、數(shù)學(xué)教學(xué)實(shí)踐、初等代數(shù)研究、初等幾何研究、教法研究、計(jì)算機(jī)輔助教學(xué)、教育學(xué)、教育心理學(xué)、大學(xué)英語等?!冻橄蟠鷶?shù)基礎(chǔ)》于延棟編
2025-03-25 02:32
2025-06-07 19:30
【摘要】第一章行列式習(xí)題課1.排列的逆序數(shù)及計(jì)算方法2.對換及對換對排列的影響??1212111212122212n121nnntnppppppnnnnaaaaaaDaaaaaa????3.n階行列式的定義.,,2,1;
2025-08-05 15:32