【摘要】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32
【摘要】Matlab在線性代數(shù)中的應(yīng)用目標要求?會給矩陣賦值?會進行矩陣的基本運算,包括:加、減、數(shù)乘,乘法,轉(zhuǎn)置,冪等運算?會用命令inv計算矩陣的逆?會用命令det計算行列式;?會用命令rank計算矩陣的秩;?會用命令rref把矩陣變?yōu)樾凶詈喰停?會用命令rref計算矩陣的逆?會用命令rref解方程組
2024-10-18 16:05
【摘要】一、選擇題1.n階行列式等于[].習(xí)題一(26頁)(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-03-22 05:54
【摘要】......矩陣秩的8大性質(zhì):線性方程組的解:向量組的線性相關(guān)性:對比:①②
2025-06-23 22:24
【摘要】線性代數(shù)課程的性質(zhì)?線性代數(shù)是數(shù)學(xué)的一個分支,是數(shù)學(xué)的基礎(chǔ)理論課之一。它既是學(xué)習(xí)數(shù)學(xué)的必修課,也是學(xué)習(xí)其他專業(yè)課的必修課。內(nèi)容與任務(wù)?線性代數(shù)是研究有限維線性空間及其線性變換的基本理論,包括行列式、矩陣及矩陣的初等變換、線性方程組、向量組的線性相關(guān)性、相似矩陣及二次型等內(nèi)容。?
2025-02-21 15:46
【摘要】經(jīng)過初等行變換,行階梯形矩陣還可以進一步化為行最簡形矩陣,其特點是:非零行的第一個非零元為1,且這些非零元所在列的其它元素都為0.例如?????????????????000003100030110401015行最簡形矩陣對行階梯形矩陣再進行初等列變換,可得
2025-01-20 01:14
【摘要】考研線性代數(shù)知識框架向量三種運算 對于矩陣,我們定義了三種運算:加法、數(shù)乘、轉(zhuǎn)置和乘法。這些運算可以應(yīng)用到向量上得到向量的相應(yīng)運算。 向量的加法和數(shù)乘合起來稱為線性運算。通過線性運算,我們...
2025-04-06 12:00
【摘要】利用范德蒙行列式計算例計算利用范德蒙行列式計算行列式,應(yīng)根據(jù)范德蒙行列式的特點,將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-04-30 05:22
【摘要】第一篇:線性代數(shù)試題三 線性代數(shù)B第三套練習(xí)題及答案 一、單項選擇題(本大題共10小題,每小題2分,共20分) 在每小題列出的四個備選項中只有一個是符合題目要求的,請將其代碼填寫在題后的括號內(nèi)。...
2024-10-15 12:34
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-09 10:35
【摘要】12022線性代數(shù)期末試題及參考答案一、判斷題(正確填T,錯誤填F。每小題2分,共10分)1.A是n階方陣,R??,則有AA???。()2.A,B是同階方陣,且0?AB,則111)(????ABAB。()3.如
2025-01-06 17:51
【摘要】1、行列式1.行列式共有個元素,展開后有項,可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時針或逆時針旋轉(zhuǎn),所得行列式為,則;將主對角線翻
2025-07-24 13:45
【摘要】第一章行列式1.利用對角線法則計算下列三階行列式:(1);解=2′(-4)′3+0′(-1)′(-1)+1′1′8-0′1′3-2′(-1)′8-1′(-4)′(-1)
2025-06-28 21:04
【摘要】1線性代數(shù)第1講下載網(wǎng)址:.2第一章行列式§二階,三階行列式3(一)二階行列式1112112212212122aaaaaaaa??a11a12a21a22?+4例1.5152(1)31332?
2024-10-19 01:17
【摘要】廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)線性代數(shù)行列式.矩陣的概念和運算.逆矩陣.矩陣的初等變換.一般線性方程組.廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)行列式主要內(nèi)容:1.二階行列式.2.三階行列式.3.n階行列式.4.行列式的性質(zhì).5.克
2025-05-12 14:27